
Anatomization and Protection of Mobile Apps’ Location Privacy Threats

Kassem Fawaz, Huan Feng, and Kang G. Shin
The University of Michigan

{kmfawaz, huanfeng, kgshin}@umich.edu

Abstract

Mobile users are becoming increasingly aware of the pri-
vacy threats resulting from apps’ access of their loca-
tion. Few of the solutions proposed thus far to mitigate
these threats have been deployed as they require either
app or platform modifications. Mobile operating systems
(OSes) also provide users with location access controls.
In this paper, we analyze the efficacy of these controls in
combating the location-privacy threats. For this analysis,
we conducted the first location measurement campaign
of its kind, analyzing more than 1000 free apps from
Google Play and collecting detailed usage of location
by more than 400 location-aware apps and 70 Advertise-
ment and Analytics (A&A) libraries from more than 100
participants over a period ranging from 1 week to 1 year.
Surprisingly, 70% of the apps and the A&A libraries pose
considerable profiling threats even when they sporadi-
cally access the user’s location. Existing OS controls
are found ineffective and inefficient in mitigating these
threats, thus calling for a finer-grained location access
control. To meet this need, we propose LP-Doctor, a
light-weight user-level tool that allows Android users to
effectively utilize the OS’s location access controls while
maintaining the required app’s functionality as our user-
study (with 227 participants) shows.

1 Introduction

Mobile users are increasingly aware of the privacy
threats caused by apps’ access of their location [12,
42]. According to recent studies [14, 17, 42], users
are also taking measures against these threats ranging
from changing the way they run apps to disabling loca-
tion services all together on their mobile devices. How
to mitigate location-privacy threats has also been re-
searched for some time. Researchers have proposed
and even implemented location-privacy protection mech-
anisms (LPPMs) for mobile devices [2, 6, 12, 20, 30].

However, few of them have been deployed as they re-
quire app or system-level modifications, both of which
are unappealing/unrealistic to the ordinary users.

Faced with location-privacy threats, users are left
only with whatever controls the apps and OSes provide.
Some, but not all, apps allow the users to control their
location access. OSes have been improving on this front.
iOS includes a new permission to authorize location ac-
cess in the background, or when the app is not actively
used. Also, iOS, Windows OS, and Blackberry (An-
droid to follow suit) utilize per-app location-access per-
missions. The user authorizes location access at the very
first time an app accesses his location and has the option
to change this decision for every subsequent app invoca-
tion. We want to answer two important questions related
to this: (i) are these controls effective in protecting the
user’s location privacy and (ii) if not, how can they be
improved at the user level without modifying any app or
the underlying OS?

To answer these questions, we must understand the
location-privacy threats posed by mobile apps. This con-
sists of understanding the apps’ location-access patterns
and their usage patterns. For this, we instrumented and
analyzed the top 1165 downloaded free apps (that require
location-access permissions) from Google Play to study
their location-access patterns. We also studied the be-
havior of Advertisement and Analytics (A&A) libraries,
such as Flurry, embedded in the apps that might access
location. We analyzed only those apps/libraries that ac-
cess location through Android’s official location APIs.
While some apps/libraries might circumvent the OS in
accessing location, it is an orthogonal problem to that
addressed in this paper.

We then analyzed the users’ app-usage patterns by uti-
lizing three independent datasets. First, we collected and
analyzed app-tagged location traces through a 10-month
data collection campaign (Jan. 2013—Nov. 2013) for 24
Android smartphone users. Second, we recruited 95 An-
droid users through PhoneLab [31], a smartphone mea-

surement testbed at New York State University at Buf-
falo, for 4 months. Finally, we utilized the dataset from
Livelab at Rice University [34] that contains app-usage
and location traces for 34 iPhone users for over a year.

Utimately, we were able to evaluate the privacy threats
posed by 425 apps and 77 third-party libraries. 70% of
the apps are found to have the potential of posing pro-
filing threats that have not yet been adequately studied
or addressed before [15, 16, 25, 41]. Moreover, the A&A
libraries pose significant profiling threats on more than
80% of the users as they aggregate location information
from multiple apps. Most of the users are unaware of
these threats as they can’t keep track of exposure of their
location information. The issue becomes more prob-
lematic in the case of A&A libraries where users are
oblivious to which apps these libraries are packed in and
whether they are receiving location updates.

Given the nature of the threats, we studied the effec-
tiveness of the existing OS controls. We found that these
controls are capable of thwarting only a fraction of the
underlying privacy threats, especially tracking threats.
As for profiling, the user only has the options of either
blocking or allowing location access. These two options
come at either of the two extremes of the privacy–utility
spectrum: the user either enjoys full privacy with no util-
ity, or full utility with no privacy. As for A&A libraries,
location accesses from a majority of the apps must be
blocked to thwart the location-privacy threats caused by
these libraries.

The main problem arises from the user’s inability to
exercise fine-grained control on when an app should re-
ceive a location update. The interface provided by ex-
isting controls makes it hard for the user to enforce
location-access control on a per visited place/session ba-
sis. Even if the user can dynamically change the control
of location access, he cannot estimate the privacy threats
at runtime. The location-privacy threat is a function of
the current location along with previously released loca-
tions. This makes it difficult to estimate the threat for
apps and even harder for A&A libraries.

To fill this gap, we propose LP-Doctor, a user-level
app, to protect the location privacy of smartphone users,
which offers three salient features. First, LP-Doctor
evaluates the privacy threat that the app might pose be-
fore launching it. If launching the app from the current
location poses a threat, then it acts to protect the user’s
privacy. It also warns the user of the potential threat in
a non-intrusive manner. Second, LP-Doctor is a user-
level app and does not require any modification to the
underlying OS or other apps. It acts as a control knob
for the underlying OS tools. Third, LP-Doctor lets the
user control, for each app, the privacy–utility tradeoff by
adjusting the protection level while running the app.

We implemented LP-Doctor as an Android app that

can be downloaded from Google Play. The privacy pro-
tection that LP-Doctor provides comes at a minimal
performance overhead. We recruited 227 participants
through Amazon Mechanical Turk and asked them to
download and use LP-Doctor from Google Play. The
overwhelming majority of the participants reported little
effect on the quality of service and user experience. More
than 77% of the participants indicated that they would in-
stall LP-Doctor to protect their location privacy.

In summary, we make the following main contribu-
tions:

• The first location data collection campaign of its
kind to measure, analyze, and model location-
privacy threats from the apps’ perspectives (Sec-
tions 3–6);

• Evaluation of the effectiveness of OS’s location pri-
vacy controls by anatomizing the location-privacy
threats posed by the apps (Sections 7–8);

• Design, implementation and evaluation of a novel
user-level app, LP-Doctor, based on our analysis
to fill the gaps in existing controls and improve their
effectiveness (Section 9).

2 Related Work

App-Based Studies: To the best of our knowledge, this
is the first attempt to quantify and model location privacy
from the apps’ perspective. Researchers already con-
cluded that many mobile apps and A&A libraries leak lo-
cation information about the users to the cloud [5,23,38].
These efforts are complimentary to ours; we study the
quantity and quality of location information that the apps
and libraries locally gather while assuming that they may
leak this information outside the device.

Analysis of Location Privacy: Influenced by exist-
ing location datasets (vehicular traces, cellular traces,
etc.), most of the existing studies view location privacy in
smartphones as if there were only one app continuously
accessing a user’s location [7, 11, 25, 26, 29, 33, 41]. Re-
searchers also proposed mechanisms [28, 29, 32] (their
effectiveness analyzed by Shokri et al. [36]) to pro-
tect against the resulting tracking-privacy threats. Such
mechanisms have shown to be ineffective in thwarting
the profiling threats [41] which are more prevalent as we
will show later.

Researchers started considering sporadic location-
access patterns as a source of location-privacy threat
that calls for a different treatment than the continuous
case [4]. Still, existing studies focus mostly on the track-
ing threat [3, 35]. The only exception to this is the work
by Freudiger et al. [15]. They assessed the erosion of the

user’s privacy from sporadic location accesses as the por-
tion of the PoIs identified after downsampling the contin-
uous location trace. In this paper, we propose a formal
metric to model the profiling threats. Also, we show that
an app’s location-access behavior can’t be modeled as
simply downsampling the user’s mobility.

Location-Privacy Protection Proposals: Several so-
lutions have been proposed to protect mobile users’ lo-
cation privacy. MockDroid [6] allows for blocking apps’
location access to protect the user’s location privacy. LP-
Guardian [12] is another system aiming at protecting
the user’s location privacy by incorporating a myriad of
mechanisms. Both systems require platform modifica-
tions, hindering their deployment. Other mechanisms,
such as Caché [2] and the work by Micinski et al. [30],
provide apps with coarsened locations but require mod-
ifications to the apps. Koi [20] proposed a location pri-
vacy enhancing system that utilizes a cloud service, but
requires developers to use a different API to access loca-
tion. Apps on Google Play such as PlaceMask and Fake
GPS Location Spoofer rely on the user to manually feed
apps with fake locations, which reduce their usability.

Finally, researchers have proposed improved permis-
sion models for Android [1, 24]. In their models, the
users are aware of how much the apps access their loca-
tion and have the choice to enable/disable location access
for each app (AppOps provided such functionality in An-
droid 4.3). LP-Doctor improves on these in three ways.
First, it provides a privacy model that maps each app’s
location access to a privacy metric. This model includes
more information than just the number of location ac-
cesses by the app. Second, LP-Doctor makes some de-
cisions on behalf of the users to avoid interrupting their
tasks and to make privacy protection more usable. Third,
LP-Doctor employs per-session location-access granu-
larity which achieves a better privacy–utility tradeoff.

3 Background and Data Collection

To study the efficacy of location-access controls of differ-
ent mobile OSes, we had to first analyze location-privacy
threats from the apps’ perspectives. This includes study-
ing how different apps collect the user’s location. We
conduct a data collection campaign to achieve this us-
ing the Android platform. Our results, however, can be
generalized to other mobile platforms like iOS.

3.1 Location-Access Controls
Each mobile platform provides users with a set of
location-access controls to mitigate possible location-
privacy threats. Android (prior to Android M) provides a
one-time permission model that allows users to authorize
location access. Once the user approves the permission

Figure 1: Android’s permission list (left) and location
settings (right).

Figure 2: iOS’s location settings (left) and prompts
(right).

list (Fig. 1–left) for the app, it is installed and the permis-
sions can’t be revoked. It also provides a global location
knob (Fig. 1–right) to control location services. The user
can’t exercise per-app location-access control.

Other platforms, such as Blackberry OS and iOS, pro-
vide finer-grained location permissions. Each app has a
settings menu (Fig. 2–left) that indicates the resources it
is allowed to access, including location. The user can
at any point of time revoke resource access by any app.
The first time an app accesses location, the OS prompts
the user to authorize location access for the app in the
current and future sessions (Fig. 2–right). Also, Google,
starting from Android M, will provide a similar permis-
sion model (an evolution of the previously deployed Ap-
pOps in Android 4.3) to control access of location and
other resources. At present, iOS provides the users with
an additional option to authorize location access in the
background to prevent apps from tracking users.

In the rest of this paper, we study the following con-
trols: (1) one-time location permissions, (2) authoriza-
tion of location access in the background, and (3) finer-
grained per-app permissions.

3.2 System Model
We study location-privacy threats through apps and A&A
libraries that access the user’s location. These apps and
libraries then provide the service, and keep the location

records indexed by a user ID, such as MAC address, An-
droid ID, IMEI, etc.

We assume that the app/library communicates all of
the user’s location samples to the service provider.1 This
allows us to model the location-privacy threats caused by
apps/libraries in the worst-case scenario. The app is the
only means by which the service provider can collect the
user’s location updates. We don’t consider cases where
the service provider obtains the user’s location via side
channels other than the official API, e.g., an app reads
the nearby access points and sends them to a localization
service, such as skyhook.

We preclude system and browsing apps from our study
for the following reasons. System apps are part of the OS
that already has access to the user’s location all the time.
Hence, analyzing their privacy implications isn’t very in-
formative. As for the browsing apps, the location sink
might be a visited website as well as the browser itself.
We decided not to monitor the user’s web history during
the data collection for privacy concerns. Also, app-usage
patterns differ from browsing patterns. The conclusions
derived for the former don’t necessarily translate to those
for the latter.

3.3 App and A&A libraries Analysis
In February 2014, we downloaded the top 100 apps of
each of Google Play’s 27 app categories. We were left
with 2588 unique apps, of which 1165 apps request lo-
cation permissions. We then instrumented Android to
intercept every location access invoked by both the app
and the packed A&A libraries.

The main goal of this analysis was to unravel the sit-
uations in which an app accesses location and whether it
feeds a packed A&A library. In Android, the app could
be running in the foreground, cached in the background,
or as a service. Using a real device, we ran every app
in foreground, moved it to background, and checked if it
forked a service, while recording its location requests.

Apps running in the foreground can access location
spontaneously or in response to some UI event. So, we
ran every app in two modes. In the first mode, the app
runs for a predefined period of time and then closes,
while in the second, we manually interact with each app
to trigger the location-based functionality. Finally, we
analyzed the functionality of every app and the required
location granularity to achieve this functionality.

3.4 Data Collection
As will be evident in Section 4, the app-usage pattern
is instrumental in determining the underlying location-
privacy threats. We collected the app-usage data using

1We refer to both the app developers and A&A agencies as the ser-
vice provider.

an app that we developed and published on Google Play.
Our study was deemed as not-requiring an IRB oversight
by the IRB at our institution; all the data we collected is
anonymous. Also, we clustered the participants’ location
on the device to extract their visited places. We define the
“place” as a center location with a radius of 50m and a
minimum visit time of 5 min. Then, we logged place IDs
instead of absolute location samples to further protect the
participants’ privacy.

PhoneLab: PhoneLab [31] is a testbed, deployed at
the NY State University at Buffalo, composed of 288
smartphone users. PhoneLab aims to free the researchers
from recruiting participants by providing a diverse set of
participants, which leads to stronger conclusions.

We recruited 95 participants to download and run our
app for the period between February 2014 and June 2014.
We collected detailed usage information for 625 apps, of
which 218 had location permissions and were also part
of the apps inspected in the app-analysis stage.

Our Institution: The second set consists of 24 par-
ticipants whom we recruited through personal relations
and class announcements. We launched this study from
January 2013 till November 2013, with the participation
period per user varying between 1 week and 10 months.
From this set, we collected usage data of 256 location-
aware apps.

We also collected location access patterns of some
apps from a subset of the participants. We handed 11
participants Galaxy Nexus devices with an instrumented
Android (4.1.2) that recorded app-tagged location ac-
cesses. We measured how frequently do ordinary users
invoke location-based functionality of apps that don’t
spontaneously access location (e.g., Whatsapp).

LiveLab: Finally, we utilize the Livelab dataset [34]
from Rice University. This dataset contains the app us-
age and mobility records for 34 iPhone users over the
course of a year (2010). We post-processed this dataset
to map app-usage records to the location where the apps
were invoked. We only considered those apps that over-
lapped with our Android dataset (35 apps).

4 Location-Access Patterns

We address the location-access patterns by analyzing
how different apps collect location information while
running in foreground and background. The former rep-
resents the state where the user actively interacts with the
app, while the latter represents the case where the app
runs in the background either as cached by Android or as
a persistent service.

As evident from Table 1, 74% of the apps solely ac-
cess location when running in the foreground, while only
3% continuously access the user’s location in the back-

Table 1: Location-access patterns for smartphone apps
according to Android location permissions

Fore.
(%)

Cached
(%)

Back.
(%)

None
(%)

Gran.
Coarse (%)

Coarse 71 6 1 22 100

Fine 74 14 4 12 48

All 74 12 3 14 66

Table 2: Location-access patterns for A&A libraries

Total No Location
Access

App Feeds
Location

Auto Location Access

Coarse Fine Both

77 22 17 3 2 33

ground. Around 70% of the apps accessing location in
the foreground spontaneously perform such access pre-
ceding any user interaction. Examples of these apps in-
clude Angry Birds, Yelp, Airbnb, etc.

Android caches the app when the user exits it; depend-
ing on the app’s behavior it might still access location;
only 12% of the apps access the user’s location when
they are cached. Interestingly, for 14% of the apps, we
didn’t find any evidence that they access location in any
state.

We also analyzed the location-based functionality of
every app and the required location granularity to achieve
such functionality. We focused on two location gran-
ularity levels: fine and coarse. A fine location sam-
ple is one with block-level granularity or higher, while
coarse location is that with zipcode-level granularity or
lower. We manually interacted with each app to assess
the change in its functionality while feeding it locations
with different granularity. We show the percentage of
the apps that can accommodate coarse location without
noticeable loss of app functionality in Table 1 under the
column titled Gran. Coarse. One can notice that apps
abuse the location permissions: 48% of the apps request-
ing fine location permissions can accommodate locations
with coarser granularity without loss of functionality.

Finally, we analyzed the packed A&A libraries in
these apps. We were able to identify 77 of such libraries
packed in these apps. Table 2 shows basic statistics about
these libraries. Most (more than 70%) libraries require
location access where some are fed location from the
apps (22%). The rest of the libraries automatically access
location where 3 of them require coarse location permis-
sions, 2 require fine permissions, and the rest don’t spec-
ify a permission. Also, these libraries are included within
more than one location-aware app giving them the ability
to track the user’s location beyond what a single app can
do. For example, of 1165 analyzed apps, Google Ads is

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

App session length (min)

C
D

F

PhoneLab

Our Dataset

LiveLab

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Inter−session interval (hr)

C
D

F

PhoneLab

Our Dataset

LiveLab

Figure 3: The distribution of app session lengths (left)
and inter-session intervals (right) for the three datasets.

packed within 499 apps, Flurry within 325 apps, Medi-
alets within 35 apps, etc.

5 App-Usage Patterns

As apps mostly access users’ location in the foreground,
the app-usage patterns (the way that users invoke differ-
ent apps) help determine how much location informa-
tion each app collects. Apps are shown to sporadically
sample the user’s location based on two facts. First, an
app session is equivalent to the place visited during the
session. Second, apps’ inter-session intervals follow a
Pareto-law distribution.

For foreground apps, we define a session as a sin-
gle app invocation—the period of time in which a user
runs the app then exits it. The session lengths are not
long enough to cover more than one place the user vis-
its, where 80% of these app sessions are shorter than 10
minutes (the left plot of Fig. 3). We confirmed this from
our PhoneLab dataset; 98% of the app sessions started
and ended at the same place.

This allows for collapsing an app session into one
location-access event. It doesn’t matter what frequency
the app polls the user’s location with. As long as the
app requests the user’s location at least once, while it
is running in the foreground, it will infer that the user
visited that location. We thus ignore the location-access
frequency of foreground apps, and instead focus on the
app-usage patterns.

We define the inter-session time as the interval sepa-
rating different invocations (sessions) of the same app by
the same user. The right plot of Fig. 3 shows the distri-
bution of the inter-session intervals for the three datasets.
More than 50% of the app sessions were separated by at
least one hour.

We also found that the inter-session intervals follow
a Pareto-law distribution rather than a uniform distribu-
tion. This indicates that apps don’t sample the user’s
location uniformly, indicating that existing models for
apps’ location access don’t match their actual behavior.

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Empirical Data Distribution

Intersession Interval (hrs)

P
ro

b
a
b
ili

ty

0 5 10 15 20
0

2

4

6

8

10

12

14

16

Emperical Data
S

y
n
th

e
ti
c
 D

a
ta

QQ Plot

Figure 4: The distribution of the inter-session times for
Facebook in Livelab dataset (left), and the QQ plot of
this distribution versus a Pareto law distribution (right).

Fig. 4 shows the distribution of the inter-session inter-
vals of a user running Facebook. It is evident that the
distribution of the inter-session intervals decays linearly
with respect to the increase of inter-session intervals. We
observed a similar trend with all other apps. This sug-
gests that the data decays according to a Pareto law (QQ
plot in Fig. 4). We followed the guidelines outlined by
Clauset et al. [10] to fit the data to the truncated Pareto
distribution. Three parameters (L, H, and α) define the
truncated Pareto law distribution:

pX (x)

(−α−1)L−α−1xα

1−(L
H)
−α−1 if L≤ x≤ H

0 otherwise.

After fitting the data, more than 97% of the app-usage
models are found to have α between -1 and -1.5. Accord-
ing to Vagna et al. [40], Pareto law fits different human
activity models with α between -1 and -2.

6 Privacy Model

Here we model the privacy threats caused by mobile
apps’/libraries’ access of the user’s location.

6.1 Preliminaries
Below we describe the models of user mobility, app-
usage, and adversaries that we will use throughout the
paper.

User Mobility Model: We assume there is a region
(e.g., city) of interest which includes set of places that
the user can visit. So, a domain of interest is represented
by the set Pl of all the places available in that domain:
Pl = {pl1, pl2, pl3 . . .}. Under this model, the user visits
a set of places, UPl ⊆ Pl, as part of his daily life, spends
time at pli running some apps and then moves to another
place pl j. We alternatively refer to these places as the
user’s Points of Interest (PoIs).

We associate every place pli with a visit probability
of pi, reflecting the portion of time the user spends at
pli. The user’s mobility profiles are defined as the set,
Upl , of places he visited and the probability, pi, of visit
to each place. The mobility profile is unique to each user
since a different user visits a different set of places with
a different probability distribution [41].

App-Usage Model: In Section 5, we showed that each
app session is equivalent to an observation of the user’s
visit to a place. The app accumulates observations of
the set of places that the user visits. The app will even-
tually observe that a user visited a certain place pli for
cpli times. So, we view the app as a random process that
samples the user’s entire location trace and outputs a his-
togram of places of dimension |UPl |. Each bin in the
histogram is the number of times, cpli , the app observes
the user at that specific place. The total number of visits
is represented as N = ∑

|UPl |
i=1 cpli .

The histogram represents the app’s view of the user’s
mobility. Most apps don’t continuously monitor user’s
mobility as they don’t access location in the background.
As such, they can’t track users; the most these apps can
get from a user is the histogram of the places he visited,
which constitutes the source of location-privacy threats
in this case.

Adversary Model: The adversary in our model is not
necessarily a malicious entity seeking to steal the user’s
private information. It is rather a curious entity with pos-
session of the user’s location trace. The adversary will
process and analyze these traces to infer more informa-
tion about the user that allows for a more personalized
service. This is referred to as authentic apps [39]. The
objective of our analysis is to study the effect of the or-
dinary apps collecting location on the user’s privacy.

Apps accessing location in the foreground can’t track
the user (Section 8). So, the adversary seeks to profile the
user based on locations he visited. We use the term profil-
ing to represent the process of inferring more information
about the user through the collected location data. The
profiling can take place at multiple levels, ranging from
identifying preferences all the way to revealing the user’s
identity. Instead of modeling the adversary’s profiling
methods/attacks, we quantify the amount of information
that location data provides the adversary with. The intu-
ition behind our analysis of the profiling threat is that the
more descriptive the app’s histogram of the actual user’s
mobility pattern, the higher the threat is.

6.2 Privacy Metrics
Table 3 summarizes the set of metrics that we utilize to
quantify the privacy threats that each app poses from its
location access. The simplest metric is the fraction of the
users’ PoIs the app can identify [15]. We evaluate this

Table 3: The metrics used for evaluating the location pri-
vacy threats.

Metric Description

PoItotal Fraction of the user’s PoIs
PoIpart Fraction of the user’s infrequently visited PoIs

Pro fcont
Distance between the user’s histogram and mobility pro-
file

Pro fbin χ2 test of the user’s histogram fitting the mobility profile

metric by looking at the apps’ actual collected location
traces, rather than a downsampled location trace. We will
henceforth refer to this metric as PoItotal .

We also consider a variant of the metric (referred to as
PoIpart) as the portion of the sensitive PoIs that the apps
might identify. We define the sensitive PoIs as those that
have a very low probability of being visited. These PoIs
will exhibit abnormalities in the user’s behavior. Re-
search results in psychology [19, 21] indicated that peo-
ple regard deviant (abnormal) behavior as being more
private and sensitive. Places that an individual might
visit that are not part of his regular patterns might leak a
lot of information and are thus more sensitive in nature.

The histogram, as we mentioned before, is a sample
of the user’s mobility pattern. The second aspect of the
profiling is quantifying how descriptive of the user’s mo-
bility pattern (original distribution) the app’s histogram
(sample) is.

For the purpose of our analysis and the privacy-
preserving tool we propose later, we need two types of
metrics. The first is a continuous metric, Pro fcont , that
quantifies the profiling threat as the distance between
the original distribution (mobility profile) and the sam-
ple (app’s histogram). The second is a binary metric,
Pro fbin, that indicates whether a threat exists or not.

For Pro fcont , we use the KL-divergence [27] as a mea-
sure of the difference (in bits) between the histogram (H)
and the user’s mobility pattern. The K-L divergence is
given by DKL(H‖p) = ∑

|UPl |
i=1 H(i) ln H(i)

pi
, where H(i) is

the probability of the user visiting place pli based on the
histogram, while pi is the probability of the user visit-
ing that place based on his mobility profile. The lower
(higher) the value of Pro fcont , the higher (lower) the
threat will be since the distance between the histogram
and mobility pattern will be smaller (larger).

Pro fcont is not useful in identifying histograms that
pose privacy threats. There is no intuitive way by which a
threshold can separate values that pose threats and those
not posing any threat. So, we need a criterion indicat-
ing whether or not a threat exists based on the app’s his-
togram. We use Pearson’s Chi-square goodness of fit
test to meet this need. This test indicates if the observed
sample differs from the original (theoretical) distribution.

Specifically, it checks if the null hypothesis of the sample
originating from an original distribution can be accepted
or not.

The test statistic, in our context, is χ2 =

∑
|UPl |
i=1

(cpli−Ei)
2

Ei
where Ei = N.pi is the expected

number of visits to the place pli. The statistic converges
to a Chi-squared distribution with |UPl | − 1 degrees
of freedom when the null hypothesis holds. The test
yields a p-value which if smaller than the significance
level (α) then the null hypothesis can be rejected
(Pro fbin = 0—no threat), else Pro fbin = 1, where null
hypothesis can’t be rejected, indicating the existence of
a threat. In Sections 7 and 8, we employ the widely-used
value of 0.05 as the significance level.

A&A libraries: can aggregate location information
from the different apps in which they are packed and al-
lowed to access location. We can thus view the histogram
pertaining to an A&A library as the aggregate of the his-
tograms of the apps in which the library is packed. We
evaluate the same metrics for the aggregated histogram.

For the case of PoItotal and PoIpart metric, the aggre-
gate histogram will be representative of the threat posed
by the libraries. As for Pro fcont and Pro fbin, we consider
the aggregate histogram as well as the individual apps’
histograms. The threat per library is the highest of that
of the aggregate and individual histograms. The privacy
threat posed by the library is at least as bad as that of any
app that packs it in.

7 Anatomy

We now present the major findings from our measure-
ment campaign. We analyze the location trace of each
app and user, and hence, every data point in the subse-
quent plots belongs to an app–user combination. We con-
structed each app’s histogram by overlaying its location-
access pattern on its usage data for every user.

Privacy Threat Distribution: Fig. 5 shows the distri-
butions of PoItotal , PoIpart , and Pro fcont for both the apps
and A&A libraries. As to PoItotal , most of the apps can
identify at least 10% of the user’s PoIs; while for 20%
of the app–user combinations, apps were able to identify
most of the user’s PoIs. Apps can’t identify all of the
user’s PoIs for two reasons: (1) not all apps access the
user’s location every time, as highlighted in Section 4,
and (2) users don’t run their apps from every place they
visit. On the other hand, A&A libraries can identify more
of the user’s PoIs, with most of the libraries identifying
at least 20% of the user’s PoIs. Moreover, as the middle
plots of Fig. 5 indicate, around 30% of the apps were
able to identify some of the user’s sensitive (less fre-
quently visited) PoIs. More importantly, A&A libraries
were able to identify more of the user’s sensitive PoIs,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PoI
total

C
D

F

Apps

PhoneLab

Our Dataset

LiveLab

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PoI
total

C
D

F

A&A libs

PhoneLab

Our Dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PoI
part

C
D

F

Apps

PhoneLab

Our Dataset

LiveLab

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PoI
part

C
D

F

A&A libs

PhoneLab

Our Dataset

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Prof
cont

C
D

F

Apps

PhoneLab

Our Dataset

LiveLab

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Prof
cont

C
D

F

A&A libs

PhoneLab

Our Dataset

Figure 5: The distributions of PoItotal (top), PoIpart (mid-
dle), and Pro fcont (bottom) for the apps (left) and A&A
libraries (right) from our datasets.

indicating the level of privacy threats they pose.
The two bottom plots of Fig. 5 show the distributions

of the profiling metric Pro fcont for the foreground apps
in the three datasets. The lower the value of the metric,
the higher the privacy threat is. There are two takeaways
from these two plots. First, apps do pose significant pri-
vacy threats; the distance between the apps’ histogram
and the user’s mobility pattern is less than 1 bit in 40%
of the app–user combinations for the three datasets. The
second observation has to do with the threat posed by
A&A libraries. It is clear from the comparison of the
left and right plots that these libraries pose considerably
higher threats. In more than 80% of user–library com-
binations, the distance between the observed histograms
and the user’s mobility profile is less than 1 bit.

Apps tend to even pose higher identification threats.
As evident from Fig. 5, some apps can identify a rela-
tively minor portion of the user’s mobility which might
not be sufficient to fully profile the user. Nevertheless,
the portion of PoIs tend to be those users frequently
visit (e.g., home and work) which may suffice to iden-
tify them [18, 25, 41]. This might not be a serious is-
sue for those apps, such as Facebook, that can learn the
user’s home and work from other methods. Other apps

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

sessions

P
o
I to

ta
l

PhoneLab

Our Dataset

LiveLab

0 500 1000 1500
0

1

2

3

4

5

6

7

8

sessions

P
ro

f c
o
n
t

PhoneLab

Our Dataset

LiveLab

Figure 6: The distribution of PoItotal (left) and Pro fcont
(right) vs. the number of app sessions.

0

2

4

6

8

B
o
o
k
s

B
u
s
.

C
o
m

m
.

E
d
u
c
.

E
n
te

rt
.

F
in

a
n
c
e

G
a

m
e

H
e
a

lt
h

L
if
e

M
e
d
ia

M
e
d
.

M
u
s
ic

N
e
w

s

P
e
rs

.

P
h
o
to

P
ro

d
.

S
h
o
p

S
o
c
ia

l

S
p
o
rt

s

T
o
o
ls

T
ra

n
s
.

T
ra

v
e
l

W
e
a
th

e
r

P
ro

f c
o
n
t

Figure 7: The distribution of Pro fcont vs. app categories.

and libraries (e.g., Angry Birds), however, might infer
the user’s identity even when he anonymously uses them
(without providing an identity or login information).

Fig. 5 also confirms our intuition in studying the lo-
cation traces from the apps’ perspective. If apps were
to uniformly sample the user’s mobility as has been as-
sumed in literature, Pro fcont should be mostly close to 0
(indicating no difference between the histogram and the
mobility pattern), which is not the case.

Privacy Threats and App-Usage: We also evaluated
the posed privacy threats vs. the app-usage rate as shown
in Fig. 6. As evident from the plots, there is little cor-
relation between the amount of posed threats and the
app-usage rate. Apps that are used more frequently, do
not necessarily pose higher threats, as user mobility, the
app’s location-access pattern, and the user’s app-usage
pattern affect the privacy threat.

With lower usage rates, both PoItotal and Pro fcont vary
significantly. Users with little diversity in their mobil-
ity pattern are likely to visit the same places more fre-
quently. Even the same user could invoke apps differ-
ently; he uses some apps mostly at unfamiliar places
(navigation apps), while using other apps more ubiqui-
tously (gaming apps), thus enabling the apps to identify
more of his PoIs.

Finally, we studied the distribution of the threat in re-
lation to app categories. Fig. 7 shows that the threat level
is fairly distributed across different app categories and

Group D:
Spontaneous (18%)

Group E:
UI-trigerred (16%)

All Apps
 (100%)

High Threat
(70%)

Group C:
Fine Location Needed

 (34%)

Group A:
Low Threat (30%)

Group B:
Coarse Location Needed (36%)

Figure 8: App categorization according to threat levels,
location requirements, and location-access patterns.

the same category. This confirms, again, that privacy
threats result from multiple sources and are a function
of both apps and users. Some app categories, however,
pose lower threats on average. For example, transporta-
tion apps (including navigation apps) pose lower threats
as users tend to use from unfamiliar places.

Threat Layout: Given the three datasets, we were
able to analyze the profiling threats as posed by 425
location-aware apps (Fig. 8). For this part, we use
Pro fbin metric to decide which apps pose privacy threats
and those which don’t. As apps pose different threats
depending on the users, we counted an app as posing a
threat if it poses a privacy threat to at least one user. Only
a minority of the apps (30%) pose negligible threats.

The rest of the apps pose a varying degree of pro-
filing threat. We analyzed their functionality: 52% of
such apps don’t require location with high granularity to
provide location-based functionality. For these apps, a
zipcode- or city-level granularity would be more than
enough (weather apps, games). This leaves us with
34% of the apps that require block-level or higher lo-
cation granularity to provide usable functionality. These
apps either spontaneously access location (18%) or in re-
sponse to a UI event (16%).

8 OS Controls

Having presented an anatomy for the location-privacy
threats posed by mobile apps, we are now ready to eval-
uate the effectiveness of existing OSes’ location access
controls in thwarting these threats.

Global Location Permissions: Android’s location
permissions attempt to serve two purposes: notification
and control. They notify the user that the app he is about
to install can access his location. Also, permissions aim
to control the granularity by which apps access location.
Apps with coarse-grained location permission can only
access location with both low granularity and frequency.

Fig. 9 compares the profiling threats (PoItotal and
Pro fcont) posed by apps with fine location permissions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PoI
total

C
D

F

No Perm.

Coarse Perm.

Fine Perm.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Prof
cont

C
D

F

No Perm.

Coarse Perm.

Fine Perm.

Figure 9: The distribution of PoItotal (left) and Pro fcont
(right) for PhoneLab apps with different permissions.

and those with coarse location permissions. It also plots
the distribution of the privacy metrics for apps without
location permissions assuming that they accessed loca-
tion when running. While this might seems oblivious at
a first glance, we aim to compare the location-based us-
age of apps with different location permissions. This al-
lows us to study if the location permissions are effective
as a notification mechanism so that users use apps from
different places depending on the location permissions.

The apps with fine-grained location permissions ex-
hibited very similar usage pattern to those apps without
location access. The users ran the app from the same
places regardless of whether they have location permis-
sions or not. We conclude that this notification mecha-
nism does little to alert users on potential privacy threats
and has no effect on the app-usage behavior. Similar ob-
servations have also been made by others [17].

Almost a half of the apps (Table 1) that request fine-
grained location permissions are found to be able to
achieve the location-based functionality with coarser-
granularity location. This suggests that apps abuse loca-
tion permissions. If used appropriately, permissions can
be effective in thwarting the threats resulting from apps’
abuse of location access (∼40% of the apps — Group B
— according to Fig. 8).

Background Location Access: Background location
access is critical when it comes to tracking individuals. It
enables comprehensive access to the user’s mobility in-
formation including PoIs and frequent routes. Recently,
iOS 8 introduced a new location permission that allows
users to authorize location access in the background for
apps on their devices.

This permission strikes a balance between privacy and
QoS. We showed in Section 4 that apps rarely access
location in the background. Thus, this option affects a
very low portion of the user’s apps, but is effective in
terms of privacy protection, especially in thwarting track-
ing threats. We evaluated the tracking threat in terms of
tracking time per day [12, 22] for the three datasets for
foreground location access.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking (min/day)

C
D

F
Apps

PhoneLab

Our Dataset

LiveLab

10 Minutes

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking (min/day)

C
D

F

A&A libs

PhoneLab

Our Dataset

10 Minutes

Figure 10: The distribution of the tracking threat posed
by the foreground apps (left) and A&A libraries (right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Apps toBlock
Total Apps per Lib

C
D
F

PhoneLab

Our Dataset

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Apps toBlock
Total Location−awareApps

C
D
F

PhoneLab

Our Dataset

Figure 11: The fraction of the user’s apps that must be
blocked from accessing location to protect against pri-
vacy threats posed by A&A libraries.

Fig. 10 (left) shows that in 90% of the app–user com-
binations, blocking background location access will limit
the location exposure to less than 10 minutes a day (from
foreground location access). The third-party libraries
tend to pose slightly higher tracking threats than apps
(Fig. 10 – right).

Per-app Location Permissions: To improve over
static permissions, iOS enables the user to allow/disallow
location access on a per-app basis. The users gain two
advantages from this model: (i) location access can be
blocked for a subset, but not all, of the apps, and (ii) the
apps retain some functionality even when the location
access is blocked.

Even if the user trusts an app with location access, the
app can still profile him through the places he visited
(Groups D and E in Fig. 8). To combat these threats, the
user has to either allow location access to fully exploit
the app and lose privacy, or gain his privacy while losing
the location-based app functionality. Currently, mobile
platforms offer no middle ground to balance privacy and
QoS requirements.

In Section 7, we showed that A&A libraries pose sig-
nificant threats that users are completely unaware of as
they access location from more than one app. The user
can’t identify which apps he must disallow to access lo-
cation in order to mitigate threats from third-party li-
braries. Fig. 11 shows the portion of the user’s apps

that must be disbarred from accessing location to thwart
threats from packed A&A libraries. It turns out (left plot
of Fig. 11) that in order to protect the user from privacy
threats posed by a single library, at least 50–70% of the
apps carrying the library must be disbarred from access-
ing location. This amounts to blocking location for more
than 10% of the apps installed on the device.

In conclusion, a static permission model suffers se-
rious limitations, blocking location access in the back-
ground is effective in mitigating the tracking threat but
not the profiling one, and per-app controls exhibit an un-
balanced tradeoff between privacy and QoS. Also, they
are ineffective against the threats caused by A&A li-
braries. Thus, a finer-grained location access control is
required, allowing control for each app session depend-
ing on the context. Per-session location access control
allows users to leverage better and more space in the
privacy–QoS spectrum.

9 LP-Doctor

Users can’t utilize the existing controls to achieve per-
session location-access controls for two reasons. First,
these controls are coarse-grained (providing only per-app
controls at best). For finer-level controls, the user has
to manually modify the location settings before launch-
ing each app, which is quite cumbersome and annoying.
Second, even if the user can easily change these settings,
making an informed decision is a different story. There-
fore, we propose LP-Doctor that helps users utilize the
existing OS controls to provide location-access control
on a per-session basis.

9.1 Design
LP-Doctor trusts the underlying OS and its associated
apps; it targets user-level apps accessing location while
running in the foreground, as we found that most apps
don’t access location in the background. LP-Doctor

focuses on the apps with fine location permissions as
they could pose higher threats. LP-Doctor automat-
ically coarsens location for apps requesting coarse lo-
cation permissions to ensure a commensurate privacy-
protection level.

The main operation of LP-Doctor consists of two
parts. The first involves the user-transparent operations
described below, while the second includes the interac-
tions with the user described in Section 9.2.

We bundled LP-Doctor with CyanogenMod’s app
launcher.2 It runs as a background service, intercepts
app-launch events, decides on the appropriate actions,
performs these actions, and then instructs the app to
launch. Fig. 12 shows the high-level execution flow of

2Source code: https://github.com/kmfawaz/LP-Doctor.

App
Session

Manager

Policy
Manager

1. Intercept
app launch

Action

Data

Threat
Analyzer

Anonymization
Actuator

2. Extract policy
per app-place

3. Indicate
 action

4. Instruct app
 to launch

Place
Detector

Histogram
Manager

Mobility
Manager

Location
Access

Detector

place

place

Update
 mobility model

User mobility

App & histogram
5. Detect app
session end

6. Update histogram if needed

Figure 12: The execution flow of LP-Doctor when a
location-aware app launches.

LP-Doctor. Next, we elaborate on LP-Doctor’s com-
ponents and their interactions.

App Session Manager: is responsible for monitoring
app launch and exit events. LP-Doctor needs to inter-
cept app-launch events to anonymize location.

Fortunately, Android (recently iOS as well) allow for
developing custom app launchers. Users can download
and install these launchers from the app store which will,
in turn, be responsible for listening to the user’s events
and executing the apps. We instrumented Cyanogen-
Mod’s app launcher (available as open source and under
Apache 2 license) to intercept app launch events.

Particularly, before the app launcher instructs the app
to execute, we stop the execution, save the state, and send
an intent to LP-Doctor’s background service (step 1 in
Fig. 12). LP-Doctor takes a set of actions and sends an
intent to the app launcher, signaling the app can launch
(steps 2 and 3 in Fig. 12). The app launcher then restores
the saved state and proceeds with execution of the app
(step 4 in Fig. 12). In Section 9.4, we will report the
additional delay incurred by this operation.

In the background, LP-Doctor frequently polls (once
every 10s) the current foreground app to detect if
the app is still running. For this purpose, it uses
getRecentTasks on older versions of Android and
AppUsageStats class for Android L. When an app is no
longer running in the foreground, LP-Doctor executes a
set of maintenance operations to be described later (steps
5 and 6 in Fig. 12).

Policy Manager: fetches the privacy policy for the
currently visited place and the launched app as shown in
Fig. 13.

At installation time, the user specifies a privacy policy
to be applied for the app. We call this the per-app pol-
icy which specifies three possible actions: block, allow,
and protect. If the per-app policy indicates privacy pro-

Per app
policy

Allow location

Protect location

Block location

Per-
place 1

Per-
place 2

Block location

Protect location

Block location

Protect location

Figure 13: The policy hierarchy of LP-Doctor.

Compute Profcont
for before (mbef)

and after
histograms (maft)

mbef >
maft

Release
locationNo

Compute
Profbin

Yes Profbin
= 1

Protect
location

Release
locationNo

Yes

Figure 14: The threat analyzer’s decision diagram.

tection, LP-Doctor asks the user to specify a per-place
policy for the app. The per-place policy indicates the pol-
icy that LP-Doctor must follow when the app launches
from a particular place. The policy manager passes the
app’s policy and the current place to the threat analyzer.

Place Detector & Mobility Manager: The place de-
tector monitors the user’s actual location, and applies
online clustering to extract the spatio-temporal clusters
which represent places that the users visit. Whenever the
user changes the place he is visiting, the place detector
module instructs the mobility manager to update the mo-
bility profile of the user as defined in Section 6.

Histogram Manager: maintains the histogram of the
places visited as observed by each app. It stores the his-
tograms in an SQLite table that contains the mapping
of each app–place combination to a number of observa-
tions. The threat analyzer module consults the histogram
manager to obtain two histograms whenever an app is
about to launch. The first is the current histogram of the
app (based on previous app events) which we refer to as
the “before” histogram. While the second one is the po-
tential histogram if the app were to access location from
the currently visiting place; we call this histogram as the
“after” one.

Threat Analyzer: decides on the course of action re-
garding apps associated with a protect policy. It basically
performs the decision diagram depicted in Fig. 14 to de-
cide whether to release the location or add noise.

The threat analyzer determines whether the “after”
histogram leaks more information than the old one
through computing Pro fcont for each histogram. If
Pro fcont increases LP-Doctor decides to release the lo-

cation to the app. On the other hand, if Pro fcont de-
creases, LP-Doctor uses Pro fbin to decide if the “after”
histogram fits the user’s mobility pattern and whether to
release or anonymize location.

Pro fbin depends on the significance level, α , as we
specified in Section 6. In LP-Doctor, α is a function of
the privacy level chosen by the user. LP-Doctor recog-
nizes three privacy levels: low, medium, and high. Low
privacy corresponds to α = 0.1; medium privacy corre-
sponds to α = 0.05; and high privacy protection corre-
sponds to the most conservative α = 0.01.

The procedure depicted in Fig. 14 won’t hide places
that the user seldom visits but are sensitive to him. The
per-place policies allow the user to set a privacy policy
for each visited place, effectively allowing him to con-
trol the places he wants revealed to the service providers.
Also, LP-Doctor can be extended to support other pri-
vacy criteria that try to achieve optimal privacy by per-
turbing location data [9, 37].

Anonymization Actuator: receives an action to per-
form from the threat analyzer. If the action is to pro-
tect the current location, the actuator computes a fake
location by adding Laplacian noise [3] to ensure loca-
tion indistinguishability. The privacy level determines
the amount of noise to be added on top of the current lo-
cation. One the other hand, if the action is to block, the
actuator computes the fake location of < 0,0 >.

As specified by Andrés et al. [3], repetitive engage-
ment of Laplacian noise mechanism at the same loca-
tion leaks information about the location. To counter this
threat, LP-Doctor computes the anonymized location
once per location and protection-level combination, and
saves it. When the user visits the same location again,
LP-Doctor employs the same anonymized location that
was previously computed to prevent LP-Doctor from re-
computing a fake location for the same place.

After computing/fetching the fake location, the actua-
tor module will engage the mock location provider. The
mock location provider is an Android developer feature
to modify the location provided to the app from Android.
It requires no change in the OS or the app. The actuator
then displays a non-intrusive notification to the user, and
signals the session manager to start the app.

End-of-Session Maintenance: When the app finishes
execution, the actuator disengages the mock location
provider, if engaged. The location-access detector will
then detect if the app accessed location to update the
app’s histogram accordingly. The location access de-
tector performs a “dumpsys location” to exactly detect
if the app accessed location or not while running. If it
did access location, the location-access detector module
updates the app’s histogram (increment the number of
visits from the current location). It is worth noting that
LP-Doctor treats sessions of the same app within 1 min

App will belong to
set appallow

App will belong to
set appblock

App will belong to
set appprotect

Decides the value of α
and noise level

Figure 15: The installation menu.

as the same app session.

9.2 User Interactions
LP-Doctor interacts with the user to communicate
privacy-protection status. It also enables him to pop-
ulate the privacy profiles for different apps and places.
As will be evident below, the main philosophy guiding
LP-Doctor’s design is to minimize the user interactions,
especially intrusive ones. We satisfy two design princi-
ples proposed by Felt et al. [13] that should guide the
design of a permission granting UI. The first principle
is to conserve user attention by not issuing excessively
repetitive prompts. The second is to avoid interrupting
the user’s primary tasks.

Bootstrapping Menu: The first communication in-
stance with LP-Doctor takes place upon its installation.
LP-Doctor will ask the user to set general configura-
tion options. These options include (1) alerting the user
when visiting a new location to set the per-place poli-
cies and (2) invoking protection for A&A libraries. The
menu will also instruct the user to enable the mock lo-
cation provider and grant the app “DUMP” permissions
through ADB. This interaction takes place only once per
LP-Doctor’s lifetime.

Installation Menu: LP-Doctor prompts the user
when a new (non-system and location-aware) app is in-
stalled. The menu enables the user to set the per-app
profiles. Fig. 15 shows the displayed menu when an app
(“uber” in this case) has finished installation. The user
can choose one of three options which populates three
app sets: appallow, appblock, and appprotect .

Logically, this menu resembles the per-app location
settings for iOS, except that it provides users with an
additional option of privacy protection. The protection
option acts as a middle-ground between completely al-
lowing and blocking location access to the app. The user
will interact with this menu; only once per app, and only
for non-system apps that requests the fine location per-
mission. Based on our PhoneLab dataset, we estimate

Figure 16: LP-Doctor’s notification when adding noise.

that the user will be issued this menu on average for one
app he installs per five installed apps on the device.

Per-Place Prompts: LP-Doctor relies on the user
to decide its actions in different visited places, if he
agrees to get prompted when visiting new places. Specif-
ically, whenever the user visits a new place, LP-Doctor
prompts him to decide on actions to perform when run-
ning apps that the user chose to protect. We call these
per-place policies (Fig. 13).

The per-place policies apply for apps belonging to the
set appprotect . The user has the option to specify whether
to block location access completely, or apply protec-
tion. Applying protection will proceed to execute the
operations of the threat analyzer as defined in Fig. 14.
LP-Doctor allows the user to modify the policies for
each app–place combination.
LP-Doctor issues this prompt only when the user

launched an app of the set appprotect from a new loca-
tion. From our PhoneLab dataset, we estimate that such
a prompt will be issued to the user at most once a week.

Notifications: As specified earlier, the threat actuator
displays a non-intrusive notification (Fig. 16) to the user
to inform him about the action being taken.

If the action is to allow location access (because the
policy dictates so or there is no threat), LP-Doctor no-
tifies the user that there is no action being taken. The
user has the option to invoke privacy protection for the
current app session. If the user instructs LP-Doctor to
add noise for a single app over two consecutive sessions
from the same place, LP-Doctor will create a per-place
policy for the app and move it to the appprotect set if it
were part of appallow.

On the other hand, if LP-Doctor decides to add
noise to location or block it, it will notify the user of it
(Fig. 16). The notification includes two actions that the
user can make: remove or reduce noise. If the user over-
rides LP-Doctor’s actions for two consecutive sessions
of an app from the same place, LP-Doctor remembers
the decision for future reuse.
LP-Doctor leverages the user’s behavior to learn the

protection level that achieves a favorable privacy–utility
tradeoff. Since the mapping between the chosen pri-
vacy and noise levels is independent of the running
app, the functionality of certain apps might be affected.
LP-Doctor allows the user to fine-tune this noise level
and then remembers his preference for future reuse.

Reducing the noise level will involve recomputing the
fake location with a lower noise value (if no such location
has been computed before). One could show that leak of
information (from lowering noise level successively) will
be capped by that corresponding to the fake location with
the lowest noise level released to the service provider.

Using our own and PhoneLab’s datasets, we estimate
LP-Doctor’s need to issue such non-intrusive notifica-
tion (indicating protection taking place) for only 12% of
the sessions on average for each app.

9.3 Limitations
The user-level nature of LP-Doctor introduces some
limitations related to certain classes of apps. First,
LP-Doctor, like other mechanisms, is inapplicable to
apps that require accurate location access such as navi-
gation apps for elongated period of times.

Second, LP-Doctor can’t protect the user against apps
utilizing unofficial location sources such as “WeChat.”
Such apps might scan for nearby WiFi access points and
then use scan results to compute location. LP-Doctor

can’t anonymize location fed to such apps, though it can
warn the user of the privacy threat incurred if the user
is to invoke the location-based functionality. Also, it can
offer the user the option to turn off the WiFi on the device
to prevent accurate localization by the app when running.

Finally, LP-Doctor doesn’t apply privacy protection
to the apps continuously accessing location while run-
ning in the background. Constantly invoking the mock
location provider affects the usability of apps that require
fresh and accurate location when running. Fortunately,
we found that the majority of the apps don’t access lo-
cation in the background (Section 4). Nevertheless, this
still highlights the need for OS support to control apps’
location access in the background (like the one that iOS
currently provides).

9.4 Evaluation
We now evaluate and report LP-Doctor’s overhead on
performance, Quality of Service (QoS), and usability.

9.4.1 Performance

LP-Doctor performs a set of operations which delay the
app launching. We evaluate this delay on two devices:
Samsung Galaxy S4 running Android 4.2.2, and Sam-
sung Galaxy S5 running Android 4.4.4. We recorded
the delay in launching a set of apps while running
LP-Doctor. We partitioned those apps into two sets.
The first (set 1) includes the apps which LP-Doctor

doesn’t target, while the second (set 2) includes non-
system apps that request fine location permissions.

Fig. 17 plots the delay distribution for both devices
and for the two app sets. Clearly, apps that belong to the

0

50

100

150

S4 − set 1 S4 − set 2 S5 − set 1 S5 − set 2

D
e

la
y
 (

m
s
)

Figure 17: The app launch delay caused by LP-Doctor.

first set experience very minimal delay, varying between
1 and 3ms. The second set of apps experience longer de-
lays without exceeding 50ms for both devices. We also
tested LP-Doctor’s impact on the battery by recording
the battery depletion time when LP-Doctor was running
in the background and when it was not. We found that
LP-Doctor has less than 10% energy overhead (mea-
sured as the difference in battery depletion time). Be-
sides, LP-Doctor runs the same logic as our PhoneLab
survey app in the background which 95 users ran over 4
months and reported no performance or battery issues.

9.4.2 User Study
To evaluate the usability of LP-Doctor and its effect on
QoS, we conducted a user study over Amazon Mechan-
ical Turk. We designed two Human Intelligence Tasks
(HITs), each evaluating a different representative testing
scenario of LP-Doctor.

Apps that provide location-based services (LBSes)
fall into several categories. On one dimension, an app
can pull information to the user based on the current
location, or it can push the user’s current location to
other users. On another dimension, the app can access
the user’s location continuously or sporadically to pro-
vide the LBS. One can then categorize apps as: pull-
sporadic (e.g., weather, Yelp, etc.), pull-continuous (e.g.,
Google Now), push-sporadic (e.g., geo-tagging, Face-
book check-in, etc.), or push-continuous (e.g., Google
Latitude). As LP-Doctor isn’t effective against apps
continuously accessing the user’s location (which are a
minority to start with), we focus on studying the user’s
experience of LP-Doctor while using Yelp, as a repre-
sentative example of pull-sporadic apps, and Facebook,
as representative example of push-sporadic apps.

We recruited 120 participants for the Yelp HIT and an-
other 122 for the Facebook HIT3; we had 227 unique
participants in total. On average, each participant com-
pleted the HIT in 20min and was compensated $3 for his
response. We didn’t ask the users for any personal infor-
mation and nor did LP-Doctor . We limited the study to
Android users.

Of the participants: 28% were females vs. 72% males;

3https://kabru.eecs.umich.edu/wordpress/wp-

content/uploads/lp-doctor-survey-fb.pdf

32% had high school education, 47% with BS degree or
equivalent; and 37% are older than 30 years. Also, 52%
of the participants reported that they have taken steps to
mitigate privacy threats. Interestingly, 93% of the par-
ticipants didn’t have mock locations enabled on their de-
vices indicating the participants are not tech-savvy.

We constructed the study with a set of connected
tasks. In every task, the online form displays a set
of instructions/questions that the participant user must
follow/answer. After successfully completing the task,
LP-Doctor displays a special code that the participant
must input to proceed to the next task. In what follows,
we describe the various tasks that we asked users to per-
form and how they responded.

Installing and configuring LP-Doctor: The par-
ticipants’ first task was to download LP-Doctor from
Google Play and enable mock locations. We asked the
users to rate how difficult it was to enable mock loca-
tions on the scale of 1 (easy) to 5 (difficult). 83% of the
participants answered with a value of 1 or 2 implying that
LP-Doctor is easy to install.

Installation menu: In their second task, the partici-
pants interacted with the installation menu (Fig. 15). The
users had to install (re-install if already installed) either
Yelp or Facebook. Just when either app completes in-
stallation, LP-Doctor presents the user with the menu
to input the privacy options. The participants reported
a positive experience with this menu; 83% reported it
was easy to use (rated 1 or 2 on a scale of 1 (easy) to
5 (hard)); 86% said it was informative; 83% thought it
provides them with more control than Android’s permis-
sion; 79% answered it is useful (rated 1 or 2 on a scale
of 1 (useful) to 5 (useless)); and 74% would like to have
such menu appearing whenever they install a location-
aware app (12% answered with not sure).

Impact on QoS: The survey version of LP-Doctor
adds noise on top of the user’s location regardless of
his previous choice. This allowed us to test the im-
pact of adding noise (Laplacian with 1000m radius) to
the location accessed by either Yelp or Facebook. We
didn’t ask the participants to assess the effect of location
anonymization on the QoS directly. Rather, we asked
the Yelp respondents to report their satisfaction with the
list of restaurants returned by the app. While we asked
the Facebook respondents to indicate whether the list of
places to check-in from is relevant to them. The partic-
ipants in the first HIT indicated that Yelp ran normally
(82%), the restaurant search results were relevant (73%),
the user experience didn’t change (76%), and Yelp need
not access the user’s accurate location (67%).

The Facebook HIT participants exhibited similar re-
sults: Facebook ran normally (80%), the list of places
to check-in was relevant (60%), user experience didn’t
change (80%), and Facebook need not access the user’s

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

%sessions released

C
D

F
Apps

PhoneLab

Our Dataset

LiveLab

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

%sessions released

C
D

F

A&A libs

PhoneLab

Our Dataset

Figure 18: The distribution of percentage of sessions
where apps maintain QoS for apps (left) and A&A li-
braries (right).

accurate location (80%).
Fig. 18 shows the percentage of sessions (for all app–

user combinations) that won’t experience any noise ad-
dition according to our datasets. It is obvious that the
percentage of sessions with potential loss in QoS (when
LP-Doctor adds noise) is minimal (less than 20%, a bit
higher if the user opts for A&A libraries protection). Our
user study shows that more than 70% of the users won’t
experience loss in QoS in these sessions. For those users
who do face loss in QoS, LP-Doctor provides them with
the option of adjusting the noise level at runtime through
the notifications.

Notifications: In the final task, we asked the partic-
ipants to test the noise reduction feature that allows for
a personalized privacy–utility trade-off. After they re-
duced the noise level, they would invoke the location-
based feature in both Yelp and Facebook and check if the
results were improved. Indeed, most of the participants
who reported loss in QoS reported the Yelp’s search re-
sults (64%) and Facebook’s check-in places (70%) im-
proved after reducing the noise.

The participants also indicated the the noise reduction
feature is easy to use (75%). 86% of the participants
won’t mind having this feature whenever they launch a
location-aware app.

Post-study questions: As we couldn’t control the per-
place prompts given our study design, we asked the par-
ticipants for their opinion about being prompted when
visiting new places (per-place prompts). Only 54% an-
swered they would prefer prompted, 37% answered neg-
atively, and the rest answered “I am not sure.” These re-
sponses are consistent with our design decision; the user
has to approve per-place prompts when initially config-
uring LP-Doctor as they are not automatically enabled.

Also, 82% of the participants felt comfortable that
Facebook (80%) and Yelp (85%) didn’t access their ac-
curate location. Finally, 77% of the participants an-
swered “Yes” when asked about installing LP-Doctor

or other tool to protect their location privacy. Only 11%

answered “No” and the rest answered with “I am not
sure.” This result comes at an improvement over the 52%
who initially said they took steps in the past to address
location-privacy threat.

In summary, we conducted one of the few studies
(e.g., [8]) that evaluate a location-privacy protection
mechanism in the wild. We showed that location-privacy
protection is feasible in practice where a balance between
QoS, usability, and privacy could be achieved.

10 Conclusion

In this paper, we posed a question about the effective-
ness of OS-based location-access controls and whether
they can be improved. To answer this question, we
conducted a location-collection campaign that consid-
ers location-privacy threats from the perspective of mo-
bile apps. From this campaign, we observed, modeled,
and categorized profiling as being the prominent privacy
threat from location access for both apps and A&A li-
braries. We concluded that controlling location access
per session is needed to balance between loss in QoS and
privacy protection. As existing OS controls don’t read-
ily provide such functionality, we proposed LP-Doctor,
a user-level tool that helps the user better utilize existing
OS-based location-access controls. LP-Doctor is shown
to be able to mitigate privacy threats from both apps and
A&A libraries with little effect on usability and QoS. In
future, we would like to test LP-Doctor in the wild and
use it to explore the dynamics that affect users’ decisions
to install a location-privacy protection mechanism.

11 Acknowledgments

We would like to thank the anonymous reviewers and the
shepherd, Reza Shokri, for constructive suggestions. The
work reported in this paper was supported in part by the
NSF under Grants 0905143 and 1114837, and the ARO
under W811NF-12-1-0530.

References
[1] ALMUHIMEDI, H., SCHAUB, F., SADEH, N., ADJERID, I., AC-

QUISTI, A., GLUCK, J., CRANOR, L. F., AND AGARWAL, Y.
Your location has been shared 5,398 times!: A field study on mo-
bile app privacy nudging. In Proceedings of CHI ’15 (2015),
pp. 787–796.

[2] AMINI, S., LINDQVIST, J., HONG, J., LIN, J., TOCH, E., AND
SADEH, N. Caché: Caching location-enhanced content to im-
prove user privacy. In Proceedings of MobiSys ’11 (New York,
NY, USA, 2011), ACM, pp. 197–210.

[3] ANDRÉS, M. E., BORDENABE, N. E., CHATZIKOKOLAKIS, K.,
AND PALAMIDESSI, C. Geo-indistinguishability: Differential
privacy for location-based systems. In Proceedings of CCS ’13.

[4] ANDRIENKO, G., GKOULALAS-DIVANIS, A., GRUTESER, M.,
KOPP, C., LIEBIG, T., AND RECHERT, K. Report from dagstuhl:
the liberation of mobile location data and its implications for pri-
vacy research. SIGMOBILE Mob. Comput. Commun. Rev. 17, 2
(July 2013), 7–18.

[5] ASHFORD, W. Free mobile apps a threat to privacy, study
finds. http://www.computerweekly.com/news/2240169770/Free-
mobile-apps-a-threat-to-privacy-study-finds, October 2012.

[6] BERESFORD, A. R., RICE, A., SKEHIN, N., AND SOHAN,
R. Mockdroid: Trading privacy for application functionality on
smartphones. In Proceedings of HotMobile ’11 (New York, NY,
USA, 2011), ACM, pp. 49–54.

[7] BETTINI, C., WANG, X., AND JAJODIA, S. Protecting privacy
against location-based personal identification. Secure Data Man-
agement (2005), 185–199.

[8] BILOGREVIC, I., HUGUENIN, K., MIHAILA, S., SHOKRI, R.,
AND HUBAUX, J.-P. Predicting Users’ Motivations behind Lo-
cation Check-Ins and Utility Implications of Privacy Protection
Mechanisms. In NDSS’15 (2015).

[9] BORDENABE, N. E., CHATZIKOKOLAKIS, K., AND
PALAMIDESSI, C. Optimal geo-indistinguishable mecha-
nisms for location privacy. In Proceedings of CCS ’14 (2014),
pp. 251–262.

[10] CLAUSET, A., SHALIZI, C. R., AND NEWMAN, M. E. J. Power-
law distributions in empirical data. SIAM Rev. 51, 4 (Nov. 2009),
661–703.

[11] DE MONTJOYE, Y.-A., HIDALGO, C. A., VERLEYSEN, M.,
AND BLONDEL, V. D. Unique in the crowd: The privacy bounds
of human mobility. Sci. Rep. 3 (Mar 2013).

[12] FAWAZ, K., AND SHIN, K. G. Location privacy protection for
smartphone users. In Proceedings of CCS ’14 (New York, NY,
USA, 2014), ACM, pp. 239–250.

[13] FELT, A. P., EGELMAN, S., FINIFTER, M., AKHAWE, D., AND
WAGNER, D. How to ask for permission. In Proceedings of
HotSec’12 (2012).

[14] FISHER, D., DORNER, L., AND WAGNER, D. Short paper: Lo-
cation privacy: User behavior in the field. In Proceedings of
SPSM ’12 (2012), pp. 51–56.

[15] FREUDIGER, J., SHOKRI, R., AND HUBAUX, J.-P. Evaluating
the Privacy Risk of Location-Based Services. In Financial Cryp-
tography and Data Security (FC) (2011).

[16] FRITSCH, L. Profiling and location-based services (lbs). In Pro-
filing the European Citizen, M. Hildebrandt and S. Gutwirth, Eds.
Springer Netherlands, 2008, pp. 147–168.

[17] FU, H., YANG, Y., SHINGTE, N., LINDQVIST, J., AND
GRUTESER, M. A field study of run-time location access dis-
closures on android smartphones. In Proceedings of USEC 2014.

[18] GOLLE, P., AND PARTRIDGE, K. On the anonymity of
home/work location pairs. In Proceedings of PERVASIVE ’09
(Berlin, Heidelberg, 2009), Springer-Verlag, pp. 390–397.

[19] GOODWIN, C. A conceptualization of motives to seek privacy
for nondeviant consumption. Journal of Consumer Psychology 1,
3 (1992), 261 – 284.

[20] GUHA, S., JAIN, M., AND PADMANABHAN, V. N. Koi: A
location-privacy platform for smartphone apps. In Proceedings
of NSDI’12 (2012), USENIX Association, pp. 14–14.

[21] HIGGINS, E. T. Self-discrepancy: a theory relating self and af-
fect. Psychological Review 94, 3 (Jul 1987), 319–340.

[22] HOH, B., GRUTESER, M., XIONG, H., AND ALRABADY, A.
Achieving guaranteed anonymity in gps traces via uncertainty-
aware path cloaking. IEEE TMC 9, 8 (August 2010), 1089–1107.

[23] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications.
In Proceedings of CCS ’11 (2011), pp. 639–652.

[24] JUNG, J., HAN, S., AND WETHERALL, D. Short paper: En-
hancing mobile application permissions with runtime feedback
and constraints. In Proceedings of SPSM ’12 (2012), pp. 45–50.

[25] KRUMM, J. Inference attacks on location tracks. In Proceedings
of PERVASIVE ’07 (2007), Springer-Verlag, pp. 127–143.

[26] KRUMM, J. Realistic driving trips for location privacy. In Pro-
ceedings of PERVASIVE ’09 (2009), Springer-Verlag, pp. 25–41.

[27] KULLBACK, S., AND LEIBLER, R. A. On information and suf-
ficiency. Ann. Math. Statist. 22, 1 (03 1951), 79–86.

[28] LU, H., JENSEN, C. S., AND YIU, M. L. Pad: privacy-area
aware, dummy-based location privacy in mobile services. In Pro-
ceedings of MobiDE ’08 (2008), pp. 16–23.

[29] MEYEROWITZ, J., AND ROY CHOUDHURY, R. Hiding stars with
fireworks: location privacy through camouflage. In Proceedings
of MobiCom ’09 (2009), pp. 345–356.

[30] MICINSKI, K., PHELPS, P., AND FOSTER, J. S. An Empirical
Study of Location Truncation on Android. In Mobile Security
Technologies (MoST ’13) (San Francisco, CA, May 2013).

[31] NANDUGUDI, A., MAITI, A., KI, T., BULUT, F., DEMIRBAS,
M., KOSAR, T., QIAO, C., KO, S. Y., AND CHALLEN, G.
Phonelab: A large programmable smartphone testbed. In Pro-
ceedings of SENSEMINE’13 (2013), pp. 4:1–4:6.

[32] PALANISAMY, B., AND LIU, L. Mobimix: Protecting location
privacy with mix-zones over road networks. In ICDE 2011 (april
2011), pp. 494 –505.

[33] PINGLEY, A., ZHANG, N., FU, X., CHOI, H.-A., SUBRAMA-
NIAM, S., AND ZHAO, W. Protection of query privacy for con-
tinuous location based services. In INFOCOM’11 (April 2011),
IEEE.

[34] SHEPARD, C., RAHMATI, A., TOSSELL, C., ZHONG, L., AND
KORTUM, P. Livelab: measuring wireless networks and smart-
phone users in the field. SIGMETRICS Perform. Eval. Rev. 38, 3
(Jan. 2011), 15–20.

[35] SHOKRI, R., THEODORAKOPOULOS, G., DANEZIS, G.,
HUBAUX, J.-P., AND LE BOUDEC, J.-Y. Quantifying location
privacy: the case of sporadic location exposure. In Proceedings
of PETS’11 (2011), pp. 57–76.

[36] SHOKRI, R., THEODORAKOPOULOS, G., LE BOUDEC, J., AND
HUBAUX, J. Quantifying location privacy. In Security and Pri-
vacy (SP), 2011 IEEE Symposium on (may 2011), pp. 247 –262.

[37] SHOKRI, R., THEODORAKOPOULOS, G., TRONCOSO, C.,
HUBAUX, J.-P., AND LE BOUDEC, J.-Y. Protecting location
privacy: Optimal strategy against localization attacks. In Pro-
ceedings of CCS ’12 (2012), pp. 617–627.

[38] THURM, S., AND KANE, Y. I. Your apps are watching you.
http://online.wsj.com/article/SB1000142405274870469400457602
0083703574602.html, December 2010.

[39] TRIPP, O., AND RUBIN, J. A bayesian approach to privacy en-
forcement in smartphones. In USENIX Security 14 (San Diego,
CA, 2014), USENIX Association, pp. 175–190.

[40] VAJNA, S., TTH, B., AND KERTSZ, J. Modelling bursty time
series. New Journal of Physics 15, 10 (2013), 103023.

[41] ZANG, H., AND BOLOT, J. Anonymization of location data does
not work: a large-scale measurement study. In Proceedings of
MobiCom ’11 (New York, NY, USA, 2011), ACM, pp. 145–156.

[42] ZICKUHR, K. Location-based services.
http://pewinternet.org/Reports/2013/Location.aspx, Septem-
ber 2013.

