19th International Conference on Telecommunications (ICT 2012)

A Privacy-Preserving Cache Management System for

MANETS

Kassem Fawaz, Noor Abbani, Hassan Artail

Department of Electrical and Computer Engineering
American University of Beirut
Beirut, Lebanon
{kmf04, nma51, hartail } @aub.edu.lb

Abstract— Mobile Ad hoc Networks (MANETSs) have become
increasingly popular with the rapid emergence of hand-held
devices and advanced communication technologies. As a result,
several MANET applications have been proposed one of which is
the data access application. To enhance the performance of this
application cache management systems have been suggested;
however, they have been designed regardless of the privacy
concerns they raise. We study the cache management system
COACS (a COoperative and Adaptive Caching System for
MANETSs) and its weaknesses in terms of privacy to propose a
privacy-preserving protocol to render such a caching system well
protected against all kind of internal or external privacy
breaches. We also provide a mathematical analysis to measure
the system’s degree of anonymity.

Keywords: Privacy, anonymity, cache management systems,
MANETs

I. INTRODUCTION

With the increasing prevalence of mobile handheld
electronic devices and the rapid advances in communication
technologies, Mobile Ad Hoc Networks (MANETSs) have
become increasingly popular. Contrary to infrastructure based
networks, MANETSs have no fixed routers or base stations;
therefore, most applications require the cooperation of nodes
in forwarding and routing each other’s packets which exposes
the data to other nodes leading to a privacy breach. In addition
to data exposure due to node collaboration, MANETSs are also
subjected to possible network access and hence passive traffic
analysis or active packet manipulation.

One well-known ad hoc application is data access where nodes
collaborate to access a database server by sending data item
queries. The need to reach the database server for each query
renders this application costly in terms of delay, power
consumption and bandwidth utilization. Therefore, because
MANETS are resource-limited networks, caching data has
been given much attention with the goal of limiting the
depletion of the mentioned resources.

Several systems have been proposed for cache management in
MANETS, none of which has addressed privacy as a critical

978-1-4673-0747-5/12/$31.00 ©2012 |EEE

issue making it majorly compromised in such frameworks as
will be detailed later.

Initially, CacheData and CachePath were introduced as
methods where nodes store the data for a query that is
frequently requested or caches the address to a caching node
respectively. They allow the caching node and the database
server to know the source of the request, and hence deduce
user interests. Other approaches in [3], [4] and [5] divide the
network into zones or clusters; when a node receives a request,
it broadcasts the request if not found in its local cache. This
also links the requesting node with the data which allows
nodes or the data server to profile users.

Similarly in [1], a cache management system, named COACS
(cooperative and adaptive cache system), is proposed where
nodes play the role of a cache node (CN) or a query directory
(QD). If a requesting node (RN) receives the response from
the server i.e., the item is not already cached in one of the
CNs, it caches the data locally. Therefore, there is a clear
association that a node caching data has requested that data at
some point in time. This leads to the breach in privacy of the
node’s request and interests.

As can be deduced, privacy concerns have not been addressed
in caching systems for MANETSs. Hence, in this paper we
present a protocol that implements privacy mechanisms for the
COACS framework using techniques that include source
anonymity, encryption and request hopping. With these
approaches we aim at having a privacy preserving
collaborative and adaptive cache management system.

The paper is organized as follows: Section II gives an
overview of COACS, while Section III provides work related
to cache managements systems and privacy in MANETSs. In
Section IV we describe the system design, which we analyze
in section V. Finally, future work and the conclusion are
presented in section VI.

II. BACKGROUND
As described in [1], in COACS, the system’s operations

commence when a node wants to request an item prior to the
formation of the caching system. The initial requesting node

initializes the system by electing the QDs, where QD election
takes place according to a score criterion that summarizes a
node’s resources and capabilities.

After the QD election, when an RN requires data, it sends a
data request packet (DRP) to the nearest QD. If the receiving
QD finds the data requested (QD 2 in Figure 1), it will send
the request to the involved CN (CN 6), which will directly
send the data to the RN in a data reply packet (DREP).
Otherwise, if the QD does not find the data in its index (QD1),
it will append its address to the packet and forward the request
to the nearest QD (QD 2 in Figure 1), which will go through
the same process. Finally, if all QDs are checked, the data is
finally forwarded to the data source which will send the data
to the RN that will have to cache the data since it has not been

cached on any other node.
\ Forward

Reply
rward

@ @@

Figure 1: COACS Scenario of an RN requesting data cached in
CNe [1]

Request

III. RELATED WORK

A. Cache Management Systems

All cache management systems for MANETS proposed so far
have weaknesses in terms of privacy. In [2], if the data item is
not in the requesting node’s local cache, it checks a table of
recent requests that records which node has requested which
items, and the request is forwarded to the nearest node. This
information is collected using the zone broadcasts that other
nodes issue when they fail to find the item in their recent
request table. It follows that this protocol provides no
countermeasures to privacy invasion. Both the data source and
nodes on the path to it can collect user request information.
More importantly, all nodes, by the design of the zone
cooperation mechanism, can collect information about all the
nodes in their zone.

Other protocols were based on dividing the network into zones
in [4], or clusters in [3], [5] and [6]. Again, the node first
checks if the data is in its local check, and if it is not, it
broadcasts the request to the zone members or the cluster head.
Therefore effectively upon each request to a new item in the
network, a very high number of nodes including the cluster
head will know about the cache request and consequently can
associate users to data item requests.

As can be understood from the brief survey, cache management
systems have been proposed oblivious of the privacy flaws and
breaches they incur. However, there is considerable research on
the topic in MANETS, especially in the area of routing. In the
next subsection, the approaches for preserving privacy in
MANETS are speculated.

B. Privacy in MANETs

In [9], the authors implement variable security levels and
suggest asymmetric digital signatures to provide data
confidentiality and authentication, so that the users are able to
hide their sensitive information from other users.

On the other hand, the authors in [10] target sender
anonymity in web browsing by introducing a novel method
called Crowds. Each node has a set of N nodes which
constitute its ambiguity set, and randomly decides to send the
message to the real destination or forwards it to another node
within the set. This way, the destination node cannot tell
whether the source is the actual sender or a random node,
which applies to any node on the “path”. The destination node
replies back to the sender in the reverse path.

In [11], the authors propose a source anonymous
authentication scheme that aims to conceal the source identity
but authenticates him at the same time. The sender constructs
its message, concealing it in N nested messages, where each
member of the ambiguity set unwraps one layer, until the
message reaches its final destination that is included within the
message implicitly. The reply process is not clear, but is
assumed to follow the same path as the requestor as in
Crowds. This approach requires a high traffic overhead, which
might be the cost of providing privacy. In our case however,
sender authentication is not needed since, as we argue later,
sender or source privacy is what we need along with some
smart caching protocol design.

From a totally different perspective than that of ambiguity
sets, in [12], the focus is on the networking layer (routing)
where it is proposed to use pseudonyms and random
identifiers that change with time. These identifiers are used by
nodes to replace the source and destination addresses in the
control and data traffic. This approach makes it difficult to
sustain long living routes and makes it infeasible to have
proactive routing protocols. Such a protocol also renders
DSDV unusable, and therefore, another reactive routing
protocol needs to be used due to changing identifiers.

In summary, and contrary to the above approaches, our
privacy-preserving mechanisms implemented on COACS do
not affect its usability with all routing protocols while
maintaining its performance acceptable.

IV. SYSTEM DESIGN

It is of great importance, when aiming for privacy or security
in a particular system, to know the details of the system and its
architecture. Moreover, it is vital to study the threats on this
system and the possible privacy breaches that its nodes and
data will be exposed to.

A. System Model

The system consists of a MANET of wireless mobile
nodes that are interested in certain data generated at a data
source. The data source (server) abstracts different sources,
and is connected to the MANET via a gateway through a
wired network as depicted in Figure 2.

We assume that all nodes cooperate to provide both the
caching and privacy systems for other participating nodes.
Nodes participate in caching and privacy mechanisms and
provide these services to other nodes on the account that these
other nodes provide them with similar services. Moreover, we
assume that there exists a routing protocol that enables
efficient multi-hop communications between nodes in the
MANET. We finally assume that a request message is fixed
and small in size relative to a response message that is usually
composed of packet streams.

In addition to the system assumptions, we assume that
there exists a trustworthy public key management system that
maintains and distributes the public key for each node. As a
result, each node has the public keys for all other nodes before
the system operates. Moreover, this repository maintains the
public keys for the newly introduced nodes in the system.
Furthermore, we assume that the QDs share a group key, by
which a request can be encrypted. A shared group key
between the QD nodes is needed since the same request might
traverse several QDs, and these QDs must be able to decrypt
the encrypted request. This scheme requires less overhead than
encrypting the requests with the key of each QD. Finally, we
assume that there exists a mechanism to maintain the group
key of the QDs in case of the insertion or deletion of a QD.

Figure 2: General System Model of a Data Access MANET Application

B. Adeversary Model

Different attacker properties are defined in [13], where the
authors organize them in three orthogonal dimensions. The
first dimension is whether the attacker is an internal node in
the system or an external node. An internal node in the system
is one that cooperates within the framework of COACS, such
as a CN or a QD. The second dimension covers the attacker
activity, whether passive or active. A passive attacker relies on
gathering and analyzing gathered information without
interfering in the system’s operations by sending or modifying
packets, as the case with active attackers. Finally, in the third
dimension, an attacker can be local by monitoring limited

aspects of the network, or global by having access on the
whole network communications.

In this system, we assume the adversary to be a hybrid
combination of local internal passive and global external
passive attackers. The first attacker encompasses some
compromised internal nodes such as the CNs and QDs that
passively monitor passing messages. While the second
attacker can monitor traffic flows and is able to infer which
nodes are communicating with each other. We further assume
that all nodes in the system attempt to gather as much
information as they can from passing traffic, although they are
not malicious and don’t collude with other nodes.

We also assume that these two attackers collude with each
other. As a result, the external adversary can eavesdrop to
track messages based on their sequence numbers and collude
with certain nodes in the system to tell their actual content. It
is worth noting that passive attackers are harder to detect,
more critical, and more relevant to privacy infringements than
the active attackers. However, we assume that this attacker has
limited computational capability and thus cannot break
through cryptographic measures.

C. Source Anonymity

In order to prevent the profiling of users according to the
requested data items, it is essential to hide the source of the
request. The source anonymity scheme protects the identity of
the RN in both the request and reply paths. The request path is
defined as the set of nodes that forward the request from the
RN to the first QD, while the reply path is the set of nodes that
forward the request/response from the QD back to the RN,
including the intermediary QDs and CN. The system prevents
the attacker, the recipient QDs and CN from telling the source
of the query or the destination of the response in request and
reply paths respectively.

In the request path, we utilize an approach similar to Crowds
in [10]. In our context, the cooperating nodes in the system
which all the nodes are aware of constitute the set of “jondos”.
However this approach does not protect users from local
eavesdroppers or from global attackers monitoring
communication flows. For this purpose we utilize two more
mechanisms to enhance privacy which include piggybacking
the request on passing requests or responses, in addition to
encrypting the request and changing its form each hop.

D. Request Piggybacking

The global attacker can easily expose the source as the
node that sent a COACS message after being idle for some
time and in response to no specific event. Therefore, it is
imperative to conceal the actual source of the request, through
hiding the request event itself. The adversary can also monitor
the response message stream passing through the source node,
and thus, using timing analysis it can narrow down the
response message targeted for this source. Moreover,
encrypting the response message will not benefit either, as it is
virtually impossible to hide the destination from the global
attacker because is related to the source anonymity problem.

Most of the existing techniques resort to dummy request
generation to hide the sender among a set of the senders, and
to hide the actual request among fake requests. This scheme
results in a considerable amount of overhead traffic and
battery consumption that cannot be accommodated in a
MANET environment.

In our system, the message will travel several hops before
reaching the intended destination. Hops stand for the Crowds
“jondos” that are multi-hop away in routing layer terms. As a
result, request and response traffic will cover many nodes on
the way to the destination, and other nodes can benefit from
this traffic to piggyback their requests. A piggybacking
scenario is highly probable, as nodes forward traffic for other
nodes, act as QDs and CNs so they will be routing requests
and responses most of the time, and an RN can afford to wait a
little amount of time till a request or response message is
passing through. Specifically, each node has an average of the
interval between consecutive requests to be forwarded
through. We refer to this average as the inter-request interval
Tavgreq- Also it maintains an average of the interval between the
time this node routed a request and the time it routed the
corresponding response referred to as the inter-response
interval Tygsp-

Those statistics allow the node to predict when a response or
request will pass through it, giving it the possibility of
piggybacking its request in case it had one. An RN wanting to
request a data item will check the inter-request and inter-
update intervals against the last request and check if within a
period of Ty, ms it predicts that a request or a response will
pass through. This condition is shown below and referred to as
Event A in the rest of the paper:

T avgrsp — (treqneed - tlstpcktrcvd) <Tu

If so, the RN waits and then piggybacks the request on
whatever message comes through. It is worth noting, that a
node piggybacks its own requests only and never combines
requests coming from different directions.

Moreover, all request messages are of constant sizes and
can accommodate up to K requests for data items in the same
message. If a request is piggybacked as it is, the global
attacker will be able to detect a change in the size of the
packet and deduce that a request was piggybacked. Therefore,
the packet size will be kept constant as will be explained in the
hop modification section to ensure that piggybacking small
sized requests on request messages and response streams will
pass undetected by the global adversary monitoring the
communication flows in the network, and the RN will not be
detected as the source of a request.

E. Request Hopping

In this system, each request must hop over at most N nodes
before reaching the QD to handle the request. Setting an upper
limit helps saving redundant hops which reflect in overhead
traffic and query delay. The RN piggybacks the request on a
passing request or response message and it has to set the next

destination of the piggybacked message which depends on the
forwarding probability Py.

The behavior of an RN is the same as any node on the
request path. Of course, the delay constraints on a forwarding
node are more stringent than a requesting node to avoid
having unnecessary delays in the forwarding process. So, each
node on the forwarding path, including the RN, after
piggybacking the request if available, tosses a biased coin.
This node with a probability P, chooses to forward the request
to the nearest QD, and with a probability /- P chooses another
node to forward the request to depending on the message. The
probability P;is a system parameter, where a lower probability
means that the request will traverse more nodes to get to the
QD which indicates a higher privacy requirement with the cost
of higher delay on other hand.

This way, neither a node on the request path nor the
recipient QD can tell whether the request came from the RN or
from another node on the path. Each request message contains
a count value that indicates how many hops it traveled. This
count value is part of the request message and is encrypted so
that the adversary will not have access to it. The originating
RN fills this count value with a random number between 0 and
M. Each node on the path increments the count value if it
decides to send to another destination other than the QD.
When the count value reaches N, the corresponding
forwarding node sends the request directly to the nearest QD
as depicted in Figure 3.

As for the case when the forwarding node chooses not to
send the request to the QD, it has to find another node to send
the request to. If Event A is satisfied the node will wait for a
predicted response stream and piggybacks the request. If not,
it chooses a random node and forwards the request.

Toss a coin (to forward or
send tonearest QD | with
probability of forwarding Pf

sendtoQD L

Forward

No J Yes

Walt, Piggyback o

Forward 1 random node M P

Figure 3: The process upon the reception of a request packet

Each node on the request path saves the sequence number of
the request message along with the source address of the node
that forwarded the message and the previous hop (the node
that the sent to the sender node) so that each forwarding node
maintains two-hop information that will help in case there is
node disconnection in the reply path. This will enable the

nodes to route the response in the same path the request passed
through, without the intermediary nodes, CN, QDs, or the
global attacker knowing the intended destination of the
response. Each node on the request path stores inside the
response record a timeout value that is inversely proportional
to the count value, and acts as an additional reliability
measure. The timeout value is inversely proportional to the
count value to ensure that the nodes nearer to the QD in the
reply path timeout before those that are farther. The node
operations are summarized in Table 1.

Node Operations

Initialize #a5rimergsireva =0
Constant T:\\ gRqstTime

DataStructure ReplyPathInformation
while(true)

{
R

if (a request packet is received)

:“ Updme l/u.\lTimv[\‘(/\‘zl\’L\‘z/

- Append Address

- store sequence number
with addresses of nodes of two
previous hops in ReplyPathInformation

- Check if Request is waiting to be
Piggybacked

- Piggyback request if available

- Forward packet to another node with P; or to
QD with 1-P¢}

if (a reply packet is received)

{- Check Sequence Number

- Forward packet to next node from
ReplyPathInformation for this sequence
number

- If node disconnected send to another node
stored in ReplyPathInformation for this
sequence number

1
s

Table 1: Node Operations

F. Request Encryption and Hop Modification

One major premise in the system is to be able to piggyback
node requests on top of request messages. This requires the
request message to change form at each hop and keep the
same size as well. Each time a message hops it will change
form and thus an attacker will not be able to detect if new
requests were piggybacked. Each request message is
composed of several requests that are less than K and random
padding to keep the size constant. So, when a node piggybacks
a request it removes part of the padding and adds its own
request and sends the message again. This will prevent an
attacker from detecting if an item was piggybacked or it is a
normal changing form of the packet. On the other hand, a local
eavesdropper might snoop into the message content and view
the requested data items. For this purpose, the request must

traverse the reply path encrypted, and it must be re-encrypted
at each node at the forwarding path to ensure changing form.

To start with, each RN encrypts its own request with the
shared public key of the QDs, and can either send it to another
node or piggybacks it on a request message or response
stream. The RN then generates a random key and performs
symmetric encryption on the request message. Then it
encrypts this symmetric key along with other header
information including a random nonce to prevent replay
attacks with the public key of the next hop. Then, when the
next hop receives the message, it decrypts the header with its
private key and gets the count value and the symmetric key. It
then can add its own request if available, or just change the
random padding. This node then repeats the above process.
This way, the message headers will be protected and the whole
message will change form at each hop, preventing the
adversary from being able to tell if a forwarding node is a
requesting node as well.

The node performs asymmetric key encryption on the
request itself which is small in size; albeit an inefficient
process, it does not make difference on small sized data.
However, we resort to symmetric key encryption on the
request message that encompasses many requests. Finally, to
prevent the overhead of setting symmetric keys between all
nodes in the system, the node sends the key in the request
encrypted with the recipient’s public key.

V. ANONYMITY ANALYSIS

To study the degree of anonymity in our system, we will
perform a preliminary mathematical analysis to have an
insight on the performance of the system in terms of privacy.
In [14], the authors provide metrics for Crowds with a system
of N nodes, and C nodes collaborating with the attacker.

The probability that the sender is the predecessor of the first
collaborator on the path is given by:

N-c—-1
» zl_p,.(Nc] M)

Consequently, the probability that the users are the senders of
the message is given in Equation 2:

Len Py @)
N—-c-1 N

However, in our system, the probability given to the
predecessor of the collaborating node depends also on the
probability that it has piggybacked a request:

N-c-1 .
p=1-P, [Nj — p(pigbkng) ®)

The probability of piggybacking depends on the probability of
the node having a request and on the probability that event 4
is satisfied as mentioned in the piggybacking section.
Assuming that these two events are independent, the
probability of piggybacking is:

p=1-

p(pigbkng) = p(req)p(Evem‘A) “)
Since requests passing through a node are events that occur
continuously and independently at a constant average rate, the
event of request arrival can be modeled as a Poisson process.
Consequently, the inter-arrival time between requests follows

-t
[

an exponential distribution:

avgreq
We will study the effect of Tyygrequesttime » T on the above
probability by studying its effect on P(event A).
p (E ventA) =p (T avgreq - (treqneed - tlszpckzrcvd) < Tlh)
5
=p (T < T;h + tre’qneed - t/stpcktrcvd) ()

avgreq
~Trvoreq T+
:p(Tavgreq <T;h +T.):1_6 avg qx(uﬁr /)

cst
Equation 5 is the result of the cumulative distribution of a
random variable that follows an exponential function. Since
T.s: depends on the time the request was needed and the last
time a packet was received, we set it to 0.1s to take the worst
case scenario (being a very short interval), and so the waiting
time is expected to be higher. The results are shown in Figure
5, where it is clear that as 7,,,.., increases the probability of
event A occurring decreases and hence piggybacking
decreases. This is due to the fact that a smaller 7,4, indicates
less traffic and hence less messages passing through the node.
This decreases the possibility of piggybacking.

Moreover, as Ty, increases the probability of Event 4

occurring increases. This is because the node is allowed to
wait more for a request to pass through it. However, having a
high T}, incurs delays and degrades the performance in terms
of latency. Our aim is to increase p(Event A), which as a result
will decrease p;. Decreasing the probability p; makes it closer
to the other probabilities given to the other nodes and hence
more confusing for the attacker to know the sender.
From the results, increasing P(EventA) requires a low Tieeq
i.e., considerable amount of traffic. This traffic is made
possible with the presence of request hopping. It also requires
a moderate Ty; for example, if T,ygey = 0.2's, a2 Ty 0f 0.2 5
gives a P(event A) of 0.8 which is acceptable to decrease p;.

12

o
%o

=&—Tavgrequesttime = 0.1s
~—Tavgrequesttime =0.2 s

«h—Tavgrequesttime = 0.4 s

P(event A)
o
S

=>=Tavgrequesttime =0.5s

o
IS

==Tavgrequesttime = 0.8 s

Tavgrequesttime=1s
0.2

T
0 0.2 0.4 0.6 0.8 1

Tth (in seconds)

Figure 4: Probability of Event A as a function of 7, and T,,,,gmq

VI. CONCLUSIONS AND FUTURE WORK

All proposed cache management systems for MANETs
have been designed oblivious of the privacy concerns they
raise. In this paper we have designed a privacy framework for
COACS to make it a privacy preserving cache management
systems. It provides source anonymity against three
adversaries. It protects against the global attacker by hiding
actual request events through piggybacking requests on
passing messages. Second, it protects the RN from the QDs,
CN, or the server handling the response by having the request
hop over several nodes before reaching its destination. Finally,
it protects against the local eavesdroppers and global attackers
by encrypting the requests and changing their forms on each
hop to prevent exposing the content and tracing the request.
For future work, we plan next to implement this system using
the network simulator OPNET or NS2. Such a simulation is
expected to provide us with concrete results of this system in
terms of reliability, performance, latency and anonymity. We
also plan to further generalize these operations to fit several
cache management systems other than COACS.

REFERENCES

[1] H. Artail, H. Safa, K. Mershad, Z. Abou Atme and N. Suleiman,
“COACS: A Cooperative and Adaptive Caching System for Manets”,
IEEE Transactions on Mobile Computing, Vol. 7,2008

[2] Y.Duand S. K. S. Gupta , “COOP — A cooperative caching service in
MANETSs”, IEEE International Conference on Networking and Services,
2005

[3] Y.LiandL. Gruenwald, “A Caching Model for Real-Time Databases in
Mobile Ad-Hoc Networks”, Springer Database and Expert Systems
Applications, 2005

[4] N. Chand, R. C. Joshiz and M. Misra “A zone co-operation approach for
efficient caching in mobile ad hoc networks”, International Journal of
Communications System, 2006

[5] N. Chand, R. C. Joshi and M. Misra, “An Efficient Caching Strategy in
Mobile Ad Hoc Networks Based on Clusters”, IFIP International
Conference on Wireless and Optical Communications, 2006

[6] G. Chiu and C. Young, “Exploiting In-Zone Broadcasts for Cache
Sharing in Mobile Ad Hoc Networks”, IEEE Transactions on Mobile
Computing, 2009

[7] S.Lim, W.Lee, G. Cao and C. Das, “A novel caching scheme for
improving Internet-based mobile ad hoc networks performance”,
ELSEVIER Adhoc Networks, 2006

[8] C.Chow, H. Leong and A. T. S. Chan, “Group-based Cooperative
Cache Management for Mobile Clients in a Mobile Environment”, JEEE
International Conference on Parallel Processing” 2004

[9] G. Cao, L.Yin and C. R. Das, “Cooperative Cache-Based Data Access in
Ad Hoc Networks”, IEEE Computer Society, 2004

[10] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity For Web
Transactions”, ACM Transactions on Information and System Security,
1998

[11] J. Ren, Y. Li, and T. Li, “SPM: Source Privacy for Mobile Adhoc
Networks”, EURASIP Journal on Wireless Communications and
Networking, 2010

[12] H. Choi, P. McDaniel and T. F. La Porta, “Privacy Preserving
Communication in MANETs”, [EEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and
Networks, 2007

[13] C. Diaz, S. Seys, J. Claessens, and B. Preneel, “Towards Measuring
Anonmity”, Proceedings of the 2nd international conference on Privacy
enhancing technology, 2002

[14] N. Jaggi, U. MarappaReddy and R. Bagai, “A three-dimensional
Approach Towards Measuring Soruce Anonymity”, [EEE First
International Workshop on Security in Computers, Networking and
Communications.

