
A Two-layer Cache Replication Scheme for Dense
Mobile Ad hoc Networks

Kassem Fawaz and Hassan Artail
Department of Electrical and Computer Engineering

American University of Beirut
Bliss Street, Beirut, 1107 2020, Lebanon

{kmf04, hartail}@aub.edu.lb

Abstract—This paper proposes a data replication scheme
implemented on top of a cooperative data caching architecture in
MANETs that caches submitted queries in special nodes, called
query directories (QDs), and uses them to locate data (responses)
stored in the nodes that requested them, and called caching nodes
(CNs). The QD entries are replicated according to a cost
minimization model, and the actual data items are placed in
nearby CNs. The proposed system is dynamic, as it adapts to
topology changes and relocates replicas as necessary. The
preliminary prototype of the proposed method is simulated using
ns2 to assess its performance experimentally. Enhancements in
performance in terms of lowered access delay and improved hit
rates are reported, while maintaining a cap on overhead traffic.

Keywords-replication; data accessibility; caching; MANETs

I. INTRODUCTION
In a mobile ad-hoc network (MANET) environment data

caching is essential due to its role in reducing contention in the
network, increasing the probability of mobile nodes to have
access to desired data, and improving system performance, by
essentially reducing access delay [13], [14]. Many caching
paradigms have been proposed for MANETs over the past
decade, including the COACS system introduced by the authors
in [1]. However, most of these caching architectures lack a
replication infrastructure, and suppose that data items are
cached in only one place in the network. In a MANET, some
nodes may join the network others may leave, while most nodes
will change location. This makes some cached data unavailable
or unaccessible for nodes in the network. Replicating cached
data in the network will hence improve data accessibility and
availability, and lowers access delays by reducing costly
requests to servers behind the MANET.

Nevertheless, incorporating replication into a caching
system is far from being an easy problem, as many challenges
arise. The main one is deciding on the best allocation scheme
that assigns data items to nodes, noting that in a MANET, there
is no central entity that does the decision making. Moreover,
the allocation strategy must adapt to the varying conditions of
the network to provide acceptable quality of service, reflected
by data availability and consequently low access delays. In this
work, we propose a replication scheme on top of the COACS
caching architecture [1], where data is cached in nodes and
indexed by a small set of nodes that act as directories. The
proposed work replicates the directory data and actual data
items according to a cost minimization model.

II. RELATED WORK
Replication has its roots in distributed and parallel

databases, where the environment is stable and allocation is
done beforehand. It did not take researchers long to realize its
benefits in wireless networks. To start with, the work in [3]
proposes three different allocation strategies that consider
memory limitations on mobile devices. Four parameters are
considered for optimal allocation: item access frequency,
probability of a node joining the network, probability of a link
failure, and the probability of link formation. If a node can
afford C items in its memory besides its original item, it stores
the C highest access frequency items such that duplicate items
between neighboring nodes are deleted. In each set of
connected nodes, the node which has not been a coordinator
with the lowest index is chosen to manage the replicas with its
neighbors. This method relies on fixed relocation periods,
which, as we explain later, cannot adapt fully to the dynamics
of mobile networks. In [17] a fidelity aware replication scheme
for personal devices is described. A middleware is proposed to
replicate data between powerful and weaker devices where data
is replicated with lower fidelity on weaker devices, like phones.
In [16], on the other hand, replication allocation is tackled
through a distributed solution to an optimization problem while
adapting to network dynamics. However, the authors do not
consider replica management or node disconnections.

In a second class of approaches, replication schemes try to
predict network partitions and react proactively by replicating
data to ensure data availability in all partitions. In this class,
there are centralized and distributed approaches. The former
include the works of [2], [10], and [11]. In [2], the authors
propose to cluster nodes into groups, where nodes in a group
move with a velocity that slightly varies from their mean
velocity. Server nodes hold the data and are chosen from stable
nodes at regular intervals. They gather information about the
location and velocity of the nodes using GPS or signal strength
(thus constituting major privacy concerns), and apply a
clustering algorithm to predict network partitions and replicate
the data accordingly. In [10], the authors define a reliability
metric for the link depending on the number of disjoint paths
between the node and the server. If this metric falls beneath a
defined threshold, the data is replicated from the server to the
node. The focus of this work is on the partition prediction, and
little focus is given to the actual process of replication. Finally,
the scheme in [11] constructs a directed acyclic graph of the
nodes, rooted at a data server, and classifies the links from the
nodes to the server as weak or strong. If a node does not have

978-1-4673-0921-9/12/$31.00 ©2012 IEEE

Globecom 2012 - Ad Hoc and Sensor Networking Symposium

464

any strong path with the server, it decides that it is about to
disconnect, and replicates the server data.

It is worth noting that there have been little attempts to
incorporate replication into caching architectures, which is the
focus of this paper. Caching architectures differ from most of
the cited literature in that the data source is external to the
network, and data is not updated from within the network.
Architectures similar to the one in [12] used replication inside
the network, but assumed one hop communication which is not
applicable to MANETs. In most of the caching literatures
related to multi-hop MANETs, multiple replicas would exist as
a byproduct of caching, but not exploited in a fully pledged
replication technique. In [15], the authors explore a game-
theoretic approach to decide whether a node caches a replica or
not, however, issues related to node disconnections are not
addressed. One exception is the work in [12], where replication
is implemented through a cache admission protocol. This
protocol is controlled by a value that sets the minimum distance
between the replicas. When this value is small, the access delay
decreases but at the expense of hindering data availability.

III. REPLICATION SCHEME DESIGN
The system consists of a MANET in which nodes have

interest in certain data generated at an external data source
(server) that is connected to the MANET via a gateway through
a wired network. The data exchanged in the system is
abstracted by data items representing answers to queries, and
might be webpages, files, SQL query replies, etc. An overview
of the proposed system is shown in Figure 1. It builds on top of
COACS [1], and offers data replication services.

Figure 1. Overview of basic COACS operations

To facilitate nodes access to data items, requesting nodes
(RNs) cache requested items if not found in the network, and
subsequently become Caching nodes (CNs). A small set of
nodes, called Query Directories (QDs) index the queries whose
answers (i.e., data items) are hosted at the CNs, along with the
addresses of these CNs. QDs are elected based on an algorithm
that incorporates computing a score based on the capabilities of
the node, basically, its memory, battery, bandwidth, and

uptime. Any time a QD goes offline, or its score falls below a
threshold, it gets reassigned. COACS is flat in the sense that
there is no strict clustering, as it relies on distributed indexing
of cached queries by the virtue of QDs, which act as distributed
indices for the cached information, and are the core of the
caching system. The major enhancement that QDs introduce is
that the request of a node traverses the QDs sequentially from
nearest to farthest rather than the whole set of CNs. The number
of QDs in a network is much less than the number of CNs, and
thus a request might hop several QDs before the query is found,
upon which the request is forwarded to the corresponding CN,
which in turn replies directly to the requesting node.

In in our two-layer approach, in the top layer the QD
replicates its directory (its indexes) to other QDs in the system,
while, in the second layer the actual items stored in the CNs are
replicated. Below is a description of each layer.

A. Directory Allocation Strategy
The system caches data items from an external data source,

and then attempts to place replicas optimally in the system. The
replication is not performed for every cached item and surely is
not performed directly upon caching. This is because placing
replicas optimally requires access information that is not
available when an item is first cached. A QD waits until there
are sufficient requests for the item to decide on replicating this
item. The replication strategy aims to decrease the access delay
of the data items by placing and indexing the items closer to
their requesting nodes. In fact, searching the QD system
constitutes the major part of the access delay, since the query
may traverse one or more QDs till it finds a match.

In our setting, we consider a set of N data items D = {d1,
d2,…, dN}, and a QD system consisting of K nodes Q = {q1,
q2,…, qK}. The allocation problem involves finding the
“optimal” distribution of D to Q. We define optimal allocation,
as the placement that results in the minimal cumulative cost of
indexing each di at QD qj, querying di, and data communication.
We ignore the cost of updating in this stage, as we assume that
updates occur from a data source outside the network, so that
all QDs will experience the same update cost on average. We
formulate the problem by considering a single data item, dk and
making some assumptions and definitions:

• Suppose d is accessed by a number of RNs, so we define
the set of RNs that access this items as R = {r1, r2, …, rM},
and the associated access frequencies as F= {f1, f2, …, fM}.

• If the communication cost between two nodes is defined by
the number of hops between them, we define the
communication cost between an RN ri and a QD qj as cij.

• Let the cost of storing the index of a data item at a QD qi
be si. We can define S = {s1, s2, …, sK} for the storage cost
of the index of item dk at the QDs. This cost incorporates
the memory constraints of the QD, and may incorporate in
the future a measure on how much the node is willing to
cooperate, or how much trustworthy it is.

The allocation problem can then be specified as a cost
minimization problem to determine the set of QDs where the
copies (replicas) of the data items will be stored. In the
following, xj denotes the decision variable for the placement:

Server

Wired
Network

1. Request
from RN to
QD

QD

QD

QD

CN

CN

CN

CN

CN

CN

RN
CN

2. Request
forwarded to
another QD

3. Request
forwarded to
another QD

4. Item found,
request forwarded

to CN

5. CN replies
to RN

465

⎩
⎨
⎧

=
otherwise0

 QD toassigned is d item data theif1 jK
j

q
x

The precise specification of the cost minimization is as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛× ∑∑

∈∈ ≠
Qqj

jj
Rri

ijxi
ji

j

sxcf
0

minmin

The above expression states that if each RN communicates with
the QDs that store the data of interest (i.e. where xj is not zero)
we have the minimum cost for the data access (one of the
copies), and the storage cost. The minimum cost of data access
is basically the QD assignment that minimizes the number of
hops from a requesting node to the closest QD that stores the
index. This assignment takes into consideration the access
frequencies of the item by each RN, which will give more
weight to RNs requesting the item. The above formulation is
NP-complete for large problems (i.e., large number of QDs).
However, we consider only partial replication where we have a
primary and secondary copy for each data item. The primary
copy is the cached copy when the item was first requested, and
so, the QD that has the index to the primary copy has the
decision variable set to 1. The problem then reduces to finding
another QD to store the index to the secondary copy. Having K
QDs and M RNs, and xj being not zero for only one value of j,
the complexity of the problem reduces to O(K×M).

B. QD replica Allocation Mechanism
The mechanism that describes how replicas are first

assigned is depicted in Figure 2. Initially, the QD system is
built as described in [1]. Then, QDs start indexing items as they
are requested, where each index consists of the query, and the
address of the CN that stores the actual item in addition to other
pertinent information. QDs monitor the requests for the items
they index, and store the numbers of requests from each RN
along with their IDs. The result is a table for each item indexed
by the RN ids and has the counts of the requests.

Figure 2. Sequence diagram describing secondary replica allocation

When the combined number of requests for a certain item is
large enough, the QD replicates this item. At first, the QD
marks the item as the primary copy, and asks the other QDs
about their hop count to the RNs that have accessed the item.
This enables the QD to compute the relevant cij. The QD next

runs cost minimization and decides on another QD qk to hold
the secondary copy of the item’s index. If qk accept the
assignment, it stores the index for the data item and marks it as
secondary, and searches for a node to store the secondary
replica for the actual data item.

C. Data Allocation Strategy
The second part of the replication scheme considers the

replication of the actual data items. Similar to the QD
replication, we have two replicas for each item. The primary
copy is the one stored by the node that initially requested it. We
address the allocation strategy of the replicas of the data items
in a different manner than the index at the QDs. We do not
apply cost minimization, as the number of caching nodes in the
network is rather large, and the hop information from every RN
to every CN must be known. Instead, we resort to a heuristic
where the node chosen for the secondary replica is the closest
CN to the secondary QD, meaning that when a QD is chosen to
act as a secondary index for a data item, it chooses the nearest
CN it knows about. Although the proposed method may not
yield an optimal solution, we argue that it is suboptimal and
more practical. To start with, it requires minimal computations
and overhead traffic, as it does not entail information exchange.
This issue is crucial when considering frequent relocations due
to topology changes. Moreover, we claim that the solution is
suboptimal, since the QD forwards all the requests through the
CN to the RN. As a result, the majority of the cost is in the
communication between the QD and the CN. This is why we
choose the CN for holding the secondary copy of the data item
to be the closest to the QD. Putting it all together, a request will
have to traverse the QD system (partially or completely) to find
a hit. Since there is another replica in the system, chosen using
a minimal cost criterion, the RN is more likely to find a hit at a
nearby QD. The QD then forwards the request to the closest
CN, which in turn forwards the item to the RN.

D. Relocation strategy
A major part of any replication scheme is the relocation of

the replicas. There are two main approaches to tackle this issue.
In the first approach, allocation of replicas is examined each
relocation period, whereas the other approach reacts to changes
in the topology and relocates replicas accordingly. In our work,
we use a different strategy, one that is based on the load of the
secondary replica as compared to that of the primary.
Moreover, we make a distinction between the relocation of the
QD replicas (first stage) and CN replicas (second stage).

In the first stage, the QD checks if the allocation is
achieving satisfactory results by computing the ratio between
requests for each item at the primary and secondary QD since
the last relocation. If this ratio is within a range, e.g., between
0.75 and 1.25, the QD deduces that the assignment is still
satisfactory. In this scheme, if the mobility is low to medium,
the network will tend to be stable over larger periods of time.
When the ratio is outside the range, the QD can safely assume
that a major topology change has taken place, and there is a
need to relocate the data items. Periodically, QDs exchange
small messages that consist of the IDs of the secondary data
items they index along with the number of requests to each item
since the last relocation. In particular, the QDs piggyback these
messages to the item requests that traverse the QD system. Each

466

QD indexes a number of data items which are either primary or
secondary. The QD sends only the secondary items it indexes as
to reduce the size of the message. Consequently, each QD
receiving these messages can determine which of the items in
the message are in its memory. Since only secondary items are
sent in the message, the QD that receives items it indexes but
did not send is definitely the primary QD for that item. The QD
next calculates the ratio for every item and decides on the items
whose ratio is outside the range to be relocated. The relocation
is performed in the same way that allocation is done, but with a
small difference: if the ratio is below 0.5, the QD concludes that
many more requests are being handled by the secondary QD.
This prompts the primary QD to treat it as the primary while
performing the cost minimization procedure. After this, the QD
instructs the secondary QD to delete the associated indices, and
sends them to the newly chosen QD.

In the second stage, the relocation of the actual items is
done in reaction to the relocation of the indices. When this
occurs, at least one QD must change with respect to the data
item. In effect, each newly chosen QD checks the associated
CN with the old QD and chooses a candidate CN according to
the procedure described before. If the two CNs are no more
than two hops away, the QD decides not to relocate the actual
item. Else it relocates the item from the old CN to the new CN
and updates the old QD about the newly chosen CN.

E. Node Disconnection management
As indicated before, the proposed system deals with node

disconnections, by predicting them and appropriately reacting
to maintain acceptable level of data availability. We assume
that there are two main reasons for node disconnections: node
isolation due to node mobility pattern, and battery depletion. In
the context of the proposed system, QD and CN disconnections
are of relevance, and in order to alleviate them, the system
attempts to predict them and then react proactively. In fact, the
system relies on the cooperative behavior of the QD and CN
nodes to predict their own disconnections and react
accordingly. That is, the CN and QD nodes are asked to
communicate their anticipated disconnections. Nodes detect
both types of disconnections as follows: a node can keep track
of its battery level and energy consumption rate, and if it detects
that the battery energy will be used up in the coming minutes, it
determines that it is about to disconnect. For disconnection due
to isolation, the node monitors its links with its neighbors by
monitoring the received signal strength (RSS) from its
neighbors, and if it detects that the RSS is decreasing, it decides
that it may disconnect. The actions the nodes perform upon
their anticipated disconnections depend on their in the system.

If the node that expects to disconnect is a CN, it chooses
one of its first hop neighbors to take over. The disconnecting
CN then moves its cache to the new CN and informs the QDs
of this change. On the other hand, if the node is a QD, a first
hop neighbor is elected to be a QD, using the algorithm in [1].
The QD then informs the QDs of this change, but not the
associated CNs, simply because the CNs are not aware of
which QDs index their cached items. In [1], the CNs have to be
aware of the QDs that index their data so as to be able to
reconstruct the QD cache after disconnections. This is no more
needed as items and their indices are replicated in the network.

Predicting disconnections does not save the nodes from
abrupt node disconnections that could not have been predicted
beforehand. Here too, the behavior depends on the node’s role.
If it is a CN, reconstructing its cache is a costly task in terms of
network traffic. When the disconnection could be predicted,
transferring the contents between two neighboring nodes is not
as costly as when it involves multi hop communication. So, in
this case, the QD can update the new CN with items that were
cached in the previous CN and have high request rates, and
with other items that have their secondary index replica deleted
from the QDs. On the other hand, if the node is a QD, the QD
election algorithm is run on its first hop neighbors to choose a
new QD for assuming the old QD’s role. The new QD can
reconstruct the old QD tables from the other QDs. Since all
items are replicated, it issues a request to traverse the QDs that
hold the old QD’s ID. Each QD that receives this request sends
the new QD the list of items that the old QD indexes along with
relevant information (one of which if the item is secondary or
primary). The elected QD uses the responses to reconstruct its
table, and acknowledges all the QDs about its status.

At the end of this section, it is important to note that the QD
system is used to construct the entries of the disconnected
nodes since it is composed of a relatively small number of
items, as opposed to the number of the CNs available. We also
note that a first hop neighbor is always used to replace a
disconnected node so as to have the resultant cost close to the
original allocation cost, without resorting to a new allocation.

IV. PROVISIONS FOR CONSISTENCY CONTROL
This work focuses on the allocation of replicas along with

their management. Nevertheless, we provide in this section
provisions for replica consistency control. We address this
problem as a two-layer problem. In the first layer, the system
aims to insure consistency between the primary replica and the
external data source by increasing the probability of serving
from cached data items that are identical to those on the data
source. In the second layer, we aim to propagate the updates to
the secondary replicas in a bandwidth efficient manner.

The first layer problem can be viewed as a cache
consistency problem. For this purpose, we use a TTL based
algorithm on the QDs to ensure the consistency of the primary
replica with the data source. In TTL based algorithms, a TTL
value (e.g., T) is stored alongside each data item in the cache.
The data item d is considered valid until T time units go by
from the instant of cache update. Such algorithms are popular
due to their simplicity, sufficiently good performance, and
flexibility to assign TTL values for individual data items [4].
Also, they are attractive in mobile environments [5], and are
considered suitable for MANETs because of device energy and
network bandwidth limitations [6], and because of frequent
device disconnections [4]. Moreover, TTL algorithms are
completely client based and require little server functionality.

Hence, in the proposed system, each QD stores along with
the primary replica of a data item a TTL value and monitors its
expiry. When the item expires, it is marked, and a future
request to this item will be forwarded to the data source, which
in turn replies with an updated item or a “not-modified”
message. The primary CN and the TTL values on the primary
QD are next modified accordingly. This consistency control

467

mechanism between the cache in the MANET and the external
source is referred to as weak consistency, as there is a
probability that requests might be served with stale data items.
On the other hand, we attempt to apply strong consistency
control between the primary and secondary replicas by using a
push based mechanism: whenever a QD detectes the expiration
of a data item expired, it directly informs the QD holding the
secondary replica. Of course, a QD might decide to wait a bit
and piggyback all the expired items in one message to the QDs
to save traffic, but this will decrease the consistency between
the primary and secondary index replicas. Another option
would be to have both QDs (primary and secondary) monitor
the TTL values of the same data item, and invalidate it at the
same time without a need for any communication. However,
this requires clock synchronization between the nodes, which
has its own overhead. As to the CN holding the secondary
replica of the actual item, it is only updated when the request
rate for the item is high. The primary CN is updated always
from the data source when a request is made to the expired data
item, while the secondary replica item is updated by the QD
holding the secondary index if its request rate is high.

V. EXPERIMENTAL RESULTS
A preliminary version of the proposed approach was

implemented in ns2 [7] on top of the COACS implementation
[1]. This version does not include the adaptation to the request
rate, and hence, all items are replicated. Also, it includes only
the replication of the QD data, not that of the CNs. The
simulated topology consisted of a 750×750m2 area, populated
with 100 randomly distributed nodes. The propagation model is
a two ray model, and the node's bitrate was set to 2 Mbps. A
mobility pattern based on the random waypoint model was
used, with a maximum speed of 2 m/s. The server node was
connected to the MANET via a gateway and a wired link whose
propagation delay was simulated at 40ms, thus resulting in a
server access delay of 80ms. The server has 10,000 items. Each
node issues a request every 10 seconds to a data item according
to a Zipf access pattern, used frequently to model non-uniform
distributions [8]. In Zipf law, an item ranked i (1≤ i ≤ nq) is

accessed with probability , where θ ranges
between 0 (uniform distribution) and 1 (strict Zipf distribution).
In the default scenario, there are 7 QDs, and the capacity for
each of the CNs (Caching Nodes) is 200 Kb. The simulation
parameters are summarized in Table 1.
Simulation
Parameter Default Value Simulation

Parameter
Default
Value

Simulation time 2000 sec Node pause time 30 sec

Network size 750×750 m2 Total number of data
items

10,000

Wireless
bandwidth

2 Mb/s Delay at the data
source

40 ms

Node transmission
range

100 m Node request period 10 sec

Number of nodes
100

Node request pattern
Zipf
distribution
(θ=1)

Node mobility
model

Random Way
Point

Node caching
capacity

200 KB

Node speed (v) 2 (m/s) Cache Replacement LRU

Table 1. Summary of the default simulation parameters

The reported results correspond to four experiments which
involve varying the request rate, the zipf parameter, the
maximum velocity, and the disconnection rate. The results for
the first three experiments include only the cached data query
delay (Figures 3, 4, and 5), and the reported the hit rate for the
fourth experiment (Figure 6). In Figure 3, we plot the delay
versus the request interval, which is varied between 6 and 120
seconds. It is obvious that the access delay is much less when
the replication is applied, and this confirms that the proposed
mechanism decreases the access delay by reducing the number
of hops to find a match.

Figure 3. Access Delay versus the request interval

Figure 4. Access Delay versus the zipf parameter (θ)

Figure 4, on the other hand, shows the access delay versus
the zipf parameter. For low values of theta, the access delay is
higher in the case of replication. This is not a strange result
given that the implementation does not adapt to the request rate.
In fact, a lower value of theta signifies that there is a higher
variety of the accessed elements. Given that the number of QDs
is kept constant with and without replication, and since all items
are replicated, this causes some of the items being evicted from
the QD tables in accordance with the replacement method. As a
result, maintaining two replicas is no more feasible, and the

()∑ =
qn

k
ki

1
/11/ θθ

0 20 40 60 80 100 120
60

80

100

120

140

160

180

Inter-request Interval (s)

D
el

ay
 A

fte
r C

ac
hi

ng
 (m

s)

With Replication
No Replication

0 0.2 0.4 0.6 0.8 1
50

100

150

200

250

theta

D
el

ay
 a

fte
r c

ac
hi

ng
 (m

s)

With Replication
No Replication

468

delay increases. However, at high values of theta, the
replication scheme’s performance improves greatly and shows
significant enhancement. It is worth noting that high values of
theta are used in the literature to model web requests, as in the
case of [9], where a value of 0.8 was selected. Next, Figure 5
shows that the proposed system reacts well to topology
changes. The delay improvement is still significant for high
values of node speeds under the RWP model.

Figure 5. Access Delay versus the maximum velocity

Figure 6. Hit rate versus the disconnection rate

Moreover, the hit rate as a function of the disconnection rate
is shown in Figure 6. The disconnection rate ranges from 0 to 1,
where a value of 0 signifies no disconnections, and the other
values represent the portion of time the node is disconnected. In
the simulations, disconnections are modeled through having the
QDs go into cycles of sleep and wakeup each 100 seconds. The
sleep time is 100 seconds multiplied by the disconnection rate.
In these preliminary simulations, the CNs do not get
disconnected and this is the reason why the hit rate is not that
low (the lowest value is 0.59 without replication). However, the

replication scheme improves the hit rate, and keeps it
approximately constant.

VI. CONCLUSION AND FUTURE WORK
In this work, we presented a data replication scheme that

operates on top of the COACS caching architecture. The
replication scheme allocates only two replicas of the actual data
item and its index at the directory. The latter is chosen
according to a cost minimization model. A preliminary
prototype of the system was simulated in ns2, and
enhancements in terms of access delay and hit rates are reported
over the replication free version of the system. In the future, we
will simulate a complete prototype and compare it to existing
literature methods to show further improvements. Moreover,
we will further develop the consistency control scheme, and
compare it with existing methods.

REFERENCES
[1] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, N. Sulieman, “COACS:

A Cooperative and adaptive caching system for MANETS”, IEEE TMC,
v. 7, n. 8, pp. 961-977, 2008.

[2] K. Wang, B. Li. “Efficient and guaranteed service coverage in
partitionable mobile ad-hoc networks,” IEEE INFOCOM, 2002.

[3] T. Hara, S. Madria: “Data replication for improving data accessibility in
ad hoc networks,” IEEE TMC, v.5, n.11, pp.1515-1532, 2006.

[4] X. Tang, J. Xu, W-C. Lee, "Analysis of TTL-based consistency in
unstructured peer-to-peer networks," IEEE TPDS, v. 19, n. 12, pp.1683-
1694, 2008.

[5] L. Bright, A. Gal, L. Raschid, "Adaptive pull-based policies for wide
area data delivery," ACM TDS, v. 31, n. 2, pp. 631 – 671, 2006.

[6] L. Yin, G. Cao, "Supporting cooperative caching in ad hoc networks,"
IEEE TMC, v. 5, n. 1, pp. 77- 89, 2006.

[7] NS-2 Simulator,
http://nsnam.isi.edu/nsnam/index.php/User_Information, Feb. 2010.

[8] G. Zipf, Human Behavior and the Principle of Least Effort. Addison-
Wesley, 1949

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, "Web caching and
Zipf-like distributions: evidence and implications," INFOCOM '99,
pp.126-134 v.1, Mar 1999

[10] M. Hauspie, D. Simplot, J. Carle. Replication decision algorithm based
on link evaluation for services in manet. Technical Report 2002-05,
IRCICA/LIFL, Univ. Lille 1, 2002.

[11] A. Derhab, N. Badache, A. Bouabdallah. “A partition prediction
algorithm for service replication in mobile ad hoc networks,”
WONS’2005, pp, 236–245, January 2005.

[12] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching
Strategies for Mobile Environments,” ACM SIGMOD, pp. 1-12, May
1994.

[13] G. Cao; L. Yin; C. Das, "Cooperative cache-based data access in ad hoc
networks," Computer, v. 37, n. 2, pp. 32-39, 2004

[14] M. Denko, J. Tian, "Cooperative Caching with Adaptive Prefetching in
Mobile Ad Hoc Networks," IEEE WiMob'2006, pp.38-44, June 2006.

[15] Hirsch, D.; Madria, S.; , "A cooperative game theoretic approach for data
replication in mobile ad-hoc networks," CollaborateCom’2011, pp.115-
124, Oct. 2011

[16] La, C.-A.; Michiardi, P.; Casetti, C.; Chiasserini, C.-F.; Fiore, M.; , "A
Lightweight Distributed Solution to Content Replication in Mobile
Networks," WCNC’2010, pp.1-6, April 2010

[17] Ramasubramanian, V.; Veeraraghavan, K.; Puttaswamy, K.P.N.;
Rodeheffer, T.L.; Terry, D.B.; Wobber, T.; , "Fidelity-Aware Replication
for Mobile Devices," IEEE TMC, v.9, n.12, pp.1697-1712, Dec. 2010

0 5 10 15 20

60

80

100

120

140

160

180

Maximum Velocity (m/s)

D
el

ay
 A

fte
r C

ac
hi

ng
 (m

s)

With Replication
No Replication

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

Disconnection Rate

H
it

R
at

e

With Replication
No Replication

469

