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Abstract—This paper proposes a data replication scheme 
implemented on top of a cooperative data caching architecture in 
MANETs that caches submitted queries in special nodes, called 
query directories (QDs), and uses them to locate data (responses) 
stored in the nodes that requested them, and called caching nodes 
(CNs). The QD entries are replicated according to a cost 
minimization model, and the actual data items are placed in 
nearby CNs. The proposed system is dynamic, as it adapts to 
topology changes and relocates replicas as necessary. The 
preliminary prototype of the proposed method is simulated using 
ns2 to assess its performance experimentally. Enhancements in 
performance in terms of lowered access delay and improved hit 
rates are reported, while maintaining a cap on overhead traffic.  
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I.  INTRODUCTION 
In a mobile ad-hoc network (MANET) environment data 

caching is essential due to its role in reducing contention in the 
network, increasing the probability of mobile nodes to have 
access to desired data, and improving system performance, by 
essentially reducing access delay [13], [14]. Many caching 
paradigms have been proposed for MANETs over the past 
decade, including the COACS system introduced by the authors 
in [1]. However, most of these caching architectures lack a 
replication infrastructure, and suppose that data items are 
cached in only one place in the network. In a MANET, some 
nodes may join the network others may leave, while most nodes 
will change location. This makes some cached data unavailable 
or unaccessible for nodes in the network. Replicating cached 
data in the network will hence improve data accessibility and 
availability, and lowers access delays by reducing costly 
requests to servers behind the MANET.  

Nevertheless, incorporating replication into a caching 
system is far from being an easy problem, as many challenges 
arise. The main one is deciding on the best allocation scheme 
that assigns data items to nodes, noting that in a MANET, there 
is no central entity that does the decision making. Moreover, 
the allocation strategy must adapt to the varying conditions of 
the network to provide acceptable quality of service, reflected 
by data availability and consequently low access delays. In this 
work, we propose a replication scheme on top of the COACS 
caching architecture [1], where data is cached in nodes and 
indexed by a small set of nodes that act as directories. The 
proposed work replicates the directory data and actual data 
items according to a cost minimization model. 

II. RELATED WORK 
Replication has its roots in distributed and parallel 

databases, where the environment is stable and allocation is 
done beforehand. It did not take researchers long to realize its 
benefits in wireless networks. To start with, the work in [3] 
proposes three different allocation strategies that consider 
memory limitations on mobile devices. Four parameters are 
considered for optimal allocation: item access frequency, 
probability of a node joining the network, probability of a link 
failure, and the probability of link formation. If a node can 
afford C items in its memory besides its original item, it stores 
the C highest access frequency items such that duplicate items 
between neighboring nodes are deleted. In each set of 
connected nodes, the node which has not been a coordinator 
with the lowest index is chosen to manage the replicas with its 
neighbors. This method relies on fixed relocation periods, 
which, as we explain later, cannot adapt fully to the dynamics 
of mobile networks. In [17] a fidelity aware replication scheme 
for personal devices is described. A middleware is proposed to 
replicate data between powerful and weaker devices where data 
is replicated with lower fidelity on weaker devices, like phones. 
In [16], on the other hand, replication allocation is tackled 
through a distributed solution to an optimization problem while 
adapting to network dynamics. However, the authors do not 
consider replica management or node disconnections. 

In a second class of approaches, replication schemes try to 
predict network partitions and react proactively by replicating 
data to ensure data availability in all partitions. In this class, 
there are centralized and distributed approaches. The former 
include the works of [2], [10], and [11]. In [2], the authors 
propose to cluster nodes into groups, where nodes in a group 
move with a velocity that slightly varies from their mean 
velocity. Server nodes hold the data and are chosen from stable 
nodes at regular intervals. They gather information about the 
location and velocity of the nodes using GPS or signal strength 
(thus constituting major privacy concerns), and apply a 
clustering algorithm to predict network partitions and replicate 
the data accordingly. In [10], the authors define a reliability 
metric for the link depending on the number of disjoint paths 
between the node and the server. If this metric falls beneath a 
defined threshold, the data is replicated from the server to the 
node. The focus of this work is on the partition prediction, and 
little focus is given to the actual process of replication. Finally, 
the scheme in [11] constructs a directed acyclic graph of the 
nodes, rooted at a data server, and classifies the links from the 
nodes to the server as weak or strong. If a node does not have 
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any strong path with the server, it decides that it is about to 
disconnect, and replicates the server data. 

It is worth noting that there have been little attempts to 
incorporate replication into caching architectures, which is the 
focus of this paper. Caching architectures differ from most of 
the cited literature in that the data source is external to the 
network, and data is not updated from within the network. 
Architectures similar to the one in [12] used replication inside 
the network, but assumed one hop communication which is not 
applicable to MANETs. In most of the caching literatures 
related to multi-hop MANETs, multiple replicas would exist as 
a byproduct of caching, but not exploited in a fully pledged 
replication technique. In [15], the authors explore a game-
theoretic approach to decide whether a node caches a replica or 
not, however, issues related to node disconnections are not 
addressed. One exception is the work in [12], where replication 
is implemented through a cache admission protocol. This 
protocol is controlled by a value that sets the minimum distance 
between the replicas. When this value is small, the access delay 
decreases but at the expense of hindering data availability. 

III. REPLICATION SCHEME DESIGN 
The system consists of a MANET in which nodes have 

interest in certain data generated at an external data source 
(server) that is connected to the MANET via a gateway through 
a wired network. The data exchanged in the system is 
abstracted by data items representing answers to queries, and 
might be webpages, files, SQL query replies, etc. An overview 
of the proposed system is shown in Figure 1. It builds on top of 
COACS [1], and offers data replication services.  

 
Figure 1.  Overview of basic COACS operations 

To facilitate nodes access to data items, requesting nodes 
(RNs) cache requested items if not found in the network, and 
subsequently become Caching nodes (CNs). A small set of 
nodes, called Query Directories (QDs) index the queries whose 
answers (i.e., data items) are hosted at the CNs, along with the 
addresses of these CNs. QDs are elected based on an algorithm 
that incorporates computing a score based on the capabilities of 
the node, basically, its memory, battery, bandwidth, and 

uptime. Any time a QD goes offline, or its score falls below a 
threshold, it gets reassigned. COACS is flat in the sense that 
there is no strict clustering, as it relies on distributed indexing 
of cached queries by the virtue of QDs, which act as distributed 
indices for the cached information, and are the core of the 
caching system. The major enhancement that QDs introduce is 
that the request of a node traverses the QDs sequentially from 
nearest to farthest rather than the whole set of CNs. The number 
of QDs in a network is much less than the number of CNs, and 
thus a request might hop several QDs before the query is found, 
upon which the request is forwarded to the corresponding CN, 
which in turn replies directly to the requesting node. 

In in our two-layer approach, in the top layer the QD 
replicates its directory (its indexes) to other QDs in the system, 
while, in the second layer the actual items stored in the CNs are 
replicated. Below is a description of each layer. 

A. Directory Allocation Strategy 
The system caches data items from an external data source, 

and then attempts to place replicas optimally in the system. The 
replication is not performed for every cached item and surely is 
not performed directly upon caching. This is because placing 
replicas optimally requires access information that is not 
available when an item is first cached. A QD waits until there 
are sufficient requests for the item to decide on replicating this 
item. The replication strategy aims to decrease the access delay 
of the data items by placing and indexing the items closer to 
their requesting nodes. In fact, searching the QD system 
constitutes the major part of the access delay, since the query 
may traverse one or more QDs till it finds a match. 

In our setting, we consider a set of N data items D = {d1, 
d2,…, dN}, and a QD system consisting of K nodes Q = {q1, 
q2,…, qK}. The allocation problem involves finding the 
“optimal” distribution of D to Q. We define optimal allocation, 
as the placement that results in the minimal cumulative cost of 
indexing each di at QD qj, querying di, and data communication. 
We ignore the cost of updating in this stage, as we assume that 
updates occur from a data source outside the network, so that 
all QDs will experience the same update cost on average. We 
formulate the problem by considering a single data item, dk and 
making some assumptions and definitions: 

• Suppose d is accessed by a number of RNs, so we define 
the set of RNs that access this items as R = {r1, r2, …, rM}, 
and the associated access frequencies as F= {f1, f2, …, fM}. 

• If the communication cost between two nodes is defined by 
the number of hops between them, we define the 
communication cost between an RN ri and a QD qj as cij. 

• Let the cost of storing the index of a data item at a QD qi 
be si. We can define S = {s1, s2, …, sK} for the storage cost 
of the index of item dk at the QDs. This cost incorporates 
the memory constraints of the QD, and may incorporate in 
the future a measure on how much the node is willing to 
cooperate, or how much trustworthy it is. 

The allocation problem can then be specified as a cost 
minimization problem to determine the set of QDs where the 
copies (replicas) of the data items will be stored. In the 
following, xj denotes the decision variable for the placement: 
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The above expression states that if each RN communicates with 
the QDs that store the data of interest (i.e. where xj is not zero) 
we have the minimum cost for the data access (one of the 
copies), and the storage cost. The minimum cost of data access 
is basically the QD assignment that minimizes the number of 
hops from a requesting node to the closest QD that stores the 
index. This assignment takes into consideration the access 
frequencies of the item by each RN, which will give more 
weight to RNs requesting the item. The above formulation is 
NP-complete for large problems (i.e., large number of QDs). 
However, we consider only partial replication where we have a 
primary and secondary copy for each data item. The primary 
copy is the cached copy when the item was first requested, and 
so, the QD that has the index to the primary copy has the 
decision variable set to 1. The problem then reduces to finding 
another QD to store the index to the secondary copy. Having K 
QDs and M RNs, and xj being not zero for only one value of j, 
the complexity of the problem reduces to O(K×M). 

B. QD replica Allocation Mechanism 
The mechanism that describes how replicas are first 

assigned is depicted in Figure 2. Initially, the QD system is 
built as described in [1]. Then, QDs start indexing items as they 
are requested, where each index consists of the query, and the 
address of the CN that stores the actual item in addition to other 
pertinent information. QDs monitor the requests for the items 
they index, and store the numbers of requests from each RN 
along with their IDs. The result is a table for each item indexed 
by the RN ids and has the counts of the requests.  

 
Figure 2.  Sequence diagram describing secondary replica allocation 

When the combined number of requests for a certain item is 
large enough, the QD replicates this item. At first, the QD 
marks the item as the primary copy, and asks the other QDs 
about their hop count to the RNs that have accessed the item. 
This enables the QD to compute the relevant cij. The QD next 

runs cost minimization and decides on another QD qk to hold 
the secondary copy of the item’s index. If qk accept the 
assignment, it stores the index for the data item and marks it as 
secondary, and searches for a node to store the secondary 
replica for the actual data item. 

C.  Data Allocation Strategy 
The second part of the replication scheme considers the 

replication of the actual data items. Similar to the QD 
replication, we have two replicas for each item. The primary 
copy is the one stored by the node that initially requested it. We 
address the allocation strategy of the replicas of the data items 
in a different manner than the index at the QDs. We do not 
apply cost minimization, as the number of caching nodes in the 
network is rather large, and the hop information from every RN 
to every CN must be known. Instead, we resort to a heuristic 
where the node chosen for the secondary replica is the closest 
CN to the secondary QD, meaning that when a QD is chosen to 
act as a secondary index for a data item, it chooses the nearest 
CN it knows about. Although the proposed method may not 
yield an optimal solution, we argue that it is suboptimal and 
more practical. To start with, it requires minimal computations 
and overhead traffic, as it does not entail information exchange. 
This issue is crucial when considering frequent relocations due 
to topology changes. Moreover, we claim that the solution is 
suboptimal, since the QD forwards all the requests through the 
CN to the RN. As a result, the majority of the cost is in the 
communication between the QD and the CN. This is why we 
choose the CN for holding the secondary copy of the data item 
to be the closest to the QD. Putting it all together, a request will 
have to traverse the QD system (partially or completely) to find 
a hit. Since there is another replica in the system, chosen using 
a minimal cost criterion, the RN is more likely to find a hit at a 
nearby QD. The QD then forwards the request to the closest 
CN, which in turn forwards the item to the RN. 

D. Relocation strategy 
A major part of any replication scheme is the relocation of 

the replicas. There are two main approaches to tackle this issue. 
In the first approach, allocation of replicas is examined each 
relocation period, whereas the other approach reacts to changes 
in the topology and relocates replicas accordingly. In our work, 
we use a different strategy, one that is based on the load of the 
secondary replica as compared to that of the primary. 
Moreover, we make a distinction between the relocation of the 
QD replicas (first stage) and CN replicas (second stage). 

In the first stage, the QD checks if the allocation is 
achieving satisfactory results by computing the ratio between 
requests for each item at the primary and secondary QD since 
the last relocation. If this ratio is within a range, e.g., between 
0.75 and 1.25, the QD deduces that the assignment is still 
satisfactory. In this scheme, if the mobility is low to medium, 
the network will tend to be stable over larger periods of time. 
When the ratio is outside the range, the QD can safely assume 
that a major topology change has taken place, and there is a 
need to relocate the data items. Periodically, QDs exchange 
small messages that consist of the IDs of the secondary data 
items they index along with the number of requests to each item 
since the last relocation. In particular, the QDs piggyback these 
messages to the item requests that traverse the QD system. Each 
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QD indexes a number of data items which are either primary or 
secondary. The QD sends only the secondary items it indexes as 
to reduce the size of the message. Consequently, each QD 
receiving these messages can determine which of the items in 
the message are in its memory. Since only secondary items are 
sent in the message, the QD that receives items it indexes but 
did not send is definitely the primary QD for that item. The QD 
next calculates the ratio for every item and decides on the items 
whose ratio is outside the range to be relocated. The relocation 
is performed in the same way that allocation is done, but with a 
small difference: if the ratio is below 0.5, the QD concludes that 
many more requests are being handled by the secondary QD. 
This prompts the primary QD to treat it as the primary while 
performing the cost minimization procedure. After this, the QD 
instructs the secondary QD to delete the associated indices, and 
sends them to the newly chosen QD.  

In the second stage, the relocation of the actual items is 
done in reaction to the relocation of the indices. When this 
occurs, at least one QD must change with respect to the data 
item. In effect, each newly chosen QD checks the associated 
CN with the old QD and chooses a candidate CN according to 
the procedure described before. If the two CNs are no more 
than two hops away, the QD decides not to relocate the actual 
item. Else it relocates the item from the old CN to the new CN 
and updates the old QD about the newly chosen CN. 

E. Node Disconnection management 
As indicated before, the proposed system deals with node 

disconnections, by predicting them and appropriately reacting 
to maintain acceptable level of data availability. We assume 
that there are two main reasons for node disconnections: node 
isolation due to node mobility pattern, and battery depletion. In 
the context of the proposed system, QD and CN disconnections 
are of relevance, and in order to alleviate them, the system 
attempts to predict them and then react proactively. In fact, the 
system relies on the cooperative behavior of the QD and CN 
nodes to predict their own disconnections and react 
accordingly. That is, the CN and QD nodes are asked to 
communicate their anticipated disconnections. Nodes detect 
both types of disconnections as follows: a node can keep track 
of its battery level and energy consumption rate, and if it detects 
that the battery energy will be used up in the coming minutes, it 
determines that it is about to disconnect. For disconnection due 
to isolation, the node monitors its links with its neighbors by 
monitoring the received signal strength (RSS) from its 
neighbors, and if it detects that the RSS is decreasing, it decides 
that it may disconnect. The actions the nodes perform upon 
their anticipated disconnections depend on their in the system. 

If the node that expects to disconnect is a CN, it chooses 
one of its first hop neighbors to take over. The disconnecting 
CN then moves its cache to the new CN and informs the QDs 
of this change. On the other hand, if the node is a QD, a first 
hop neighbor is elected to be a QD, using the algorithm in [1]. 
The QD then informs the QDs of this change, but not the 
associated CNs, simply because the CNs are not aware of 
which QDs index their cached items. In [1], the CNs have to be 
aware of the QDs that index their data so as to be able to 
reconstruct the QD cache after disconnections. This is no more 
needed as items and their indices are replicated in the network. 

Predicting disconnections does not save the nodes from 
abrupt node disconnections that could not have been predicted 
beforehand. Here too, the behavior depends on the node’s role. 
If it is a CN, reconstructing its cache is a costly task in terms of 
network traffic. When the disconnection could be predicted, 
transferring the contents between two neighboring nodes is not 
as costly as when it involves multi hop communication. So, in 
this case, the QD can update the new CN with items that were 
cached in the previous CN and have high request rates, and 
with other items that have their secondary index replica deleted 
from the QDs. On the other hand, if the node is a QD, the QD 
election algorithm is run on its first hop neighbors to choose a 
new QD for assuming the old QD’s role. The new QD can 
reconstruct the old QD tables from the other QDs. Since all 
items are replicated, it issues a request to traverse the QDs that 
hold the old QD’s ID. Each QD that receives this request sends 
the new QD the list of items that the old QD indexes along with 
relevant information (one of which if the item is secondary or 
primary). The elected QD uses the responses to reconstruct its 
table, and acknowledges all the QDs about its status. 

At the end of this section, it is important to note that the QD 
system is used to construct the entries of the disconnected 
nodes since it is composed of a relatively small number of 
items, as opposed to the number of the CNs available. We also 
note that a first hop neighbor is always used to replace a 
disconnected node so as to have the resultant cost close to the 
original allocation cost, without resorting to a new allocation. 

IV.  PROVISIONS FOR CONSISTENCY CONTROL 
This work focuses on the allocation of replicas along with 

their management. Nevertheless, we provide in this section 
provisions for replica consistency control. We address this 
problem as a two-layer problem. In the first layer, the system 
aims to insure consistency between the primary replica and the 
external data source by increasing the probability of serving 
from cached data items that are identical to those on the data 
source. In the second layer, we aim to propagate the updates to 
the secondary replicas in a bandwidth efficient manner. 

The first layer problem can be viewed as a cache 
consistency problem. For this purpose, we use a TTL based 
algorithm on the QDs to ensure the consistency of the primary 
replica with the data source. In TTL based algorithms, a TTL 
value (e.g., T) is stored alongside each data item in the cache. 
The data item d is considered valid until T time units go by 
from the instant of cache update. Such algorithms are popular 
due to their simplicity, sufficiently good performance, and 
flexibility to assign TTL values for individual data items [4]. 
Also, they are attractive in mobile environments [5], and are 
considered suitable for MANETs because of device energy and 
network bandwidth limitations [6], and because of frequent 
device disconnections [4]. Moreover, TTL algorithms are 
completely client based and require little server functionality. 

Hence, in the proposed system, each QD stores along with 
the primary replica of a data item a TTL value and monitors its 
expiry. When the item expires, it is marked, and a future 
request to this item will be forwarded to the data source, which 
in turn replies with an updated item or a “not-modified” 
message. The primary CN and the TTL values on the primary 
QD are next modified accordingly. This consistency control 
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mechanism between the cache in the MANET and the external 
source is referred to as weak consistency, as there is a 
probability that requests might be served with stale data items. 
On the other hand, we attempt to apply strong consistency 
control between the primary and secondary replicas by using a 
push based mechanism: whenever a QD detectes the expiration 
of a data item expired, it directly informs the QD holding the 
secondary replica. Of course, a QD might decide to wait a bit 
and piggyback all the expired items in one message to the QDs 
to save traffic, but this will decrease the consistency between 
the primary and secondary index replicas. Another option 
would be to have both QDs (primary and secondary) monitor 
the TTL values of the same data item, and invalidate it at the 
same time without a need for any communication. However, 
this requires clock synchronization between the nodes, which 
has its own overhead. As to the CN holding the secondary 
replica of the actual item, it is only updated when the request 
rate for the item is high. The primary CN is updated always 
from the data source when a request is made to the expired data 
item, while the secondary replica item is updated by the QD 
holding the secondary index if its request rate is high. 

V. EXPERIMENTAL RESULTS 
A preliminary version of the proposed approach was 

implemented in ns2 [7] on top of the COACS implementation 
[1]. This version does not include the adaptation to the request 
rate, and hence, all items are replicated. Also, it includes only 
the replication of the QD data, not that of the CNs. The 
simulated topology consisted of a 750×750m2 area, populated 
with 100 randomly distributed nodes. The propagation model is 
a two ray model, and the node's bitrate was set to 2 Mbps. A 
mobility pattern based on the random waypoint model was 
used, with a maximum speed of 2 m/s. The server node was 
connected to the MANET via a gateway and a wired link whose 
propagation delay was simulated at 40ms, thus resulting in a 
server access delay of 80ms. The server has 10,000 items. Each 
node issues a request every 10 seconds to a data item according 
to a Zipf access pattern, used frequently to model non-uniform 
distributions [8]. In Zipf law, an item ranked i (1≤ i ≤ nq) is 

accessed with probability , where θ ranges 
between 0 (uniform distribution) and 1 (strict Zipf distribution). 
In the default scenario, there are 7 QDs, and the capacity for 
each of the CNs (Caching Nodes) is 200 Kb. The simulation 
parameters are summarized in Table 1. 
Simulation 
Parameter Default Value Simulation 

Parameter 
Default 
Value 

Simulation time 2000 sec Node pause time 30 sec 

Network size 750×750 m2 Total number of data 
items 

10,000 

Wireless 
bandwidth 

2 Mb/s Delay at the data 
source 

40 ms 

Node transmission 
range  

100 m Node request period 10 sec 

Number of nodes 
100 

Node request pattern 
Zipf 
distribution 
(θ=1) 

Node mobility 
model 

Random Way 
Point 

Node caching 
capacity 

200 KB 

Node speed (v) 2 (m/s) Cache Replacement LRU 

Table 1. Summary of the default simulation parameters 

The reported results correspond to four experiments which 
involve varying the request rate, the zipf parameter, the 
maximum velocity, and the disconnection rate. The results for 
the first three experiments include only the cached data query 
delay (Figures 3, 4, and 5), and the reported the hit rate for the 
fourth experiment (Figure 6). In Figure 3, we plot the delay 
versus the request interval, which is varied between 6 and 120 
seconds. It is obvious that the access delay is much less when 
the replication is applied, and this confirms that the proposed 
mechanism decreases the access delay by reducing the number 
of hops to find a match. 

 
Figure 3.  Access Delay versus the request interval 

 

 

Figure 4.  Access Delay versus the zipf parameter (θ) 

Figure 4, on the other hand, shows the access delay versus 
the zipf parameter. For low values of theta, the access delay is 
higher in the case of replication. This is not a strange result 
given that the implementation does not adapt to the request rate. 
In fact, a lower value of theta signifies that there is a higher 
variety of the accessed elements. Given that the number of QDs 
is kept constant with and without replication, and since all items 
are replicated, this causes some of the items being evicted from 
the QD tables in accordance with the replacement method. As a 
result, maintaining two replicas is no more feasible, and the 
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delay increases. However, at high values of theta, the 
replication scheme’s performance improves greatly and shows 
significant enhancement. It is worth noting that high values of 
theta are used in the literature to model web requests, as in the 
case of [9], where a value of 0.8 was selected. Next, Figure 5 
shows that the proposed system reacts well to topology 
changes. The delay improvement is still significant for high 
values of node speeds under the RWP model. 

 
Figure 5.  Access Delay versus the maximum velocity 

 
Figure 6.  Hit rate versus the disconnection rate 

Moreover, the hit rate as a function of the disconnection rate 
is shown in Figure 6. The disconnection rate ranges from 0 to 1, 
where a value of 0 signifies no disconnections, and the other 
values represent the portion of time the node is disconnected. In 
the simulations, disconnections are modeled through having the 
QDs go into cycles of sleep and wakeup each 100 seconds. The 
sleep time is 100 seconds multiplied by the disconnection rate. 
In these preliminary simulations, the CNs do not get 
disconnected and this is the reason why the hit rate is not that 
low (the lowest value is 0.59 without replication). However, the 

replication scheme improves the hit rate, and keeps it 
approximately constant. 

VI. CONCLUSION AND FUTURE WORK 
In this work, we presented a data replication scheme that 

operates on top of the COACS caching architecture. The 
replication scheme allocates only two replicas of the actual data 
item and its index at the directory. The latter is chosen 
according to a cost minimization model. A preliminary 
prototype of the system was simulated in ns2, and 
enhancements in terms of access delay and hit rates are reported 
over the replication free version of the system. In the future, we 
will simulate a complete prototype and compare it to existing 
literature methods to show further improvements. Moreover, 
we will further develop the consistency control scheme, and 
compare it with existing methods. 
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