
 1

A fast HTML Web page change detection approach based on

hashing and reducing the number of similarity computations

Hassan Artail1 and Kassem Fawaz

Department of Electrical and Computer Engineering

American University of Beirut

P.O.Box: 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon

Phone: +961 1 350000, ext. 3520, Fax: +961 1 744462

E-mails: {hartail, kmf04}@aub.edu.lb

ABSTRACT

This paper describes a fast HTML Web page detection approach that saves computation time

by limiting the similarity computations between two versions of a Web page to nodes having the

same HTML tag type, and by hashing the web page in order to provide direct access to node

information. This efficient approach is suitable as a client application and for implementing

server applications that could serve the needs of users in monitoring modifications to HTML

Web pages made over time, and that allow for reporting and visualizing changes and trends in

order to gain insight about the significance and types of such changes. The detection of changes

across two versions of a page is accomplished by performing similarity computations after

transforming the Web page into an XML-like structure in which a node corresponds to an open-

closed HTML tag. Performance and detection reliability results were obtained, and showed speed

improvements when compared to the results of a previous approach.

Keywords: Web page change detection, change monitoring, similarity computation, HTML, tree

similarity.

1 Corresponding author

 2

1. Introduction

Changes occurring in web pages are best classified as content changes (e.g., deletions, and

additions of text), layout change (e.g., changes in the position of elements in the page), and

attributes change (e.g., changes in fonts and colors) [10]. Hence, in addition to tracking content

changes, any useful detection system should also be able to track changes in layout.

Most change detection approaches are computationally complex and require non-polynomial

running time [4, 5]. Some of the well-known systems that fit the above characteristics are

HTMLDiff [11], NetMind [22], WebCQ [20], WebVigiL [3], and CMW [10]. These basically

work by estimating the rate of change that occurred between the reference web page and its

updated version, and eventually locating the differences between them.

In this work, we propose an efficient method for detecting web pages changes. It generates

subtrees corresponding to elements that are directly connected to the BODY HTML tag. The tags

found are used to mark the nodes in the subtrees belonging to the two pages being compared and

are employed to limit the similarity computations to nodes having the same mark. Subtrees with

the highest average similarity coefficients are considered to be the most similar. Using this

information, changes in the updated version of the Web page are identified and located.

Additionally, a scheme was employed to speed up the algorithm through hashing the web page in

order to provide direct access to subtree nodes during the comparison process.

2. Related work

One challenge that has not been addressed sufficiently in the literature is the large time it

takes to compare HTML web pages, a task that is necessary to detect and locate differences

between them. This is because in order to infer changes between two HTML web pages, all the

different HTML nodes (corresponding to content and attributes of tags) have to be compared,

 3

typically leading to an NP-hard problem [4, 5]. In this regard, the approach in [10] uses

the)(3NO Hungarian algorithm to compute the maximum weighted matching on a weighted

bipartite graph and has a running time in)(
3

12 NNO , where N1 and N2 are respectively the

number of nodes in the old page and in the new (changed) page. This running time becomes

significantly large as the value of N1 is increased, i.e., as the selected region of interest in the old

page (to be monitored for changes) is increased from a small portion to the whole page.

An existing web change detection product is Copernic Tracker [24], which is a software

aimed at monitoring websites. It can track changes in the text and images and monitor for the

presence of specific text. The system however does not allow for specifying how much emphasis

to place on monitoring different aspects of the Web page and does not provide a utility for

restricting the detection to a specific zone. Furthermore, it does not reveal performance data that

discusses speed or accuracy. A second product is WebSite-Watcher [29], which includes the

ability to monitor pages behind logins. The system offers limited freedom for selecting a zone to

monitor and lacks a proper user interface to show the changes. This system also does not provide

objective performance data other than subjective user reviews. A third system is WebCQ [28],

which offers personalized delivery of change notifications and summarization plus prioritization

of changes. Notifications can be sent via email to the user reporting content changes only. These

describe modifications to text, hyper-links, image references, and keywords, in addition to

reporting modification date and page size changes. The authors however promise to implement

into WebCQ a structure-aware change detection and difference algorithm in the future [19].

In terms of published research work, several papers were found that tackle the design of

efficient algorithms for detecting changes in Web pages. In [7], [27] and [14], various diff

algorithms are described for detecting changes in XML documents. The algorithm in [14] is

 4

based on finding and then extracting the matching nodes from the two trees that are being

compared. From the non-matching nodes, the change operations are next detected. Matching of

nodes is based on comparing signatures (functions of node content and children) and order of

occurrence in common order subsequences of nodes. The works in [7] and [27] use edit scripting

to compare two documents and transform the pages to trees according to the XML structure. The

strength of these algorithms lies in their low time-complexity, which is in the order of O(nlogn).

However, this high performance cannot be achieved when comparing HTML documents as it

relies on certain XML features. Edit scripting alone is not sufficient for achieving O(nlogn) or

polynomial running time, especially if move operations (parts of the document are moved

around) are to be considered. In fact, it has been shown that edit scripting with move operations

is NP-hard [15, 5]. Basically, an edit script on a tree T1 is a sequence of operations (insertions,

deletions, and updates) that generates another tree T2. The discussed diff algorithms consider that

if a node in T1 is matched to a node in T2, then their parents are also matched. Under this

convention, two trees that have unmatched roots can never include matches: if M is a matching

from T1 to T2 then M= if and only if (Root (T1), Root (T2)) M, according to [27]. Under

this hypothesis, high performance can be achieved since a matching between two nodes can now

be propagated bottom-upwards in the tree. Unlike HTML, XML enforces structure in that there

are no unclosed and out-of-order tags, and more importantly, in a well-formed and typical XML

document, children of some node tend to have a parent of a unique tag type. In the example

below for instance, the tag type <book> is a unique child of the tag type <library>:

<library><book>...</book><book>...</book></library>

In other words, it is unlikely to find <book> as a child of another tag type. Typically, well

formed XML documents are used for structuring data, and in that context, the hierarchy tends to

 5

be quite well defined. However, in HTML markup, this relationship between tag types and their

ancestors does not hold, as we obviously can have the same tag type present in several subtrees

that are rooted at different nodes. For such reasons, the parsing and matching of HTML is much

more difficult [18].

The work in [10] transforms an HTML document into a tree structure and categorizes node

information into content, structure, and attributes. Three similarity measures are used to detect

changes of these three categories: intersect (percentage of similar words), typedist (measure of

the position of the elements in the tree), and attdist (measure of the relative weight of similar

attributes), respectively. In searching for the most similar subtree between two pages, the system

supposedly uses the Hungarian algorithm [16], but no details on its use are given. The

experimental results only show the effects of the emphasis measures on detection accuracy and

do not discuss speed performance. It should be mentioned that this approach is able to detect

node type changes (e.g., a UL node changing to an OL node, or vise versa, in the document tree)

whereas our proposed approach applies the node comparison between same types, and thus will

not detect such changes. An earlier change detection system was described in [8]. This system,

which was called AIDE, provides personalized views of how pages on the Internet change. It

uses the so-called HtmlDiff algorithm, which is built on top of the UNIX diff utility [13]. It tries

to find a common (not necessarily contiguous) subsequence of two sequences of words that has

the longest length. Although the system was designed as a server application, no speed

performance data was discussed.

3 Improved detection framework

The operation of the proposed approach is generally depicted in Figure 1. The entire process

is started by the crawler, which is launched by a daemon process that runs periodically. Every

 6

time this process runs, it checks a schedule to determine if there are Web pages that need to be

downloaded and subsequently compared to their corresponding stored versions. The schedule in

turn is populated through a user interface that allows the user to specify the web page to monitor

in addition to supplying information that controls the monitoring process. Moreover, when a user

adds a URL to the list of pages to be monitored, he or she can specify a zone within the page that

limits the change detection to this zone. At the conclusion of each change detection occurrence,

the application writes to the disk data that describe the changes and their locations within the

page. This allows the user or another program to query the application to view the actual changes

on the page itself (highlighted), to generate reports that describe the type and significance of

changes, or to plot the changes history.

Figure 1. General diagram of proposed approach

Change detection is accomplished by comparing the newly-downloaded Web page to a

previously-downloaded version stored on disk. Detection is based on calculating the similarity

Generate

node

subtrees

and form

a subtree

table

Store hash and

subtree tables

on disk

Is there a

previous stored

version of this

page?

Nodes of

old web

page having

same tag type Identify

Changes

Calculate

most similar

sub-trees/

max. sim.

coefficients

Clean

Web page

Yes

Disk

End
No

Web

page

Zone

selected?

No

Identify

subtree(s) of

selected zone

Generate

similarity data

and store in DB

Yes

Web

Crawler

Parse HTML

file into XML

structure

Build a

hash table

of tree

nodes

Compare

to previous

setup?

Yes

No

 7

among the different parts of two HTML documents and on deducing the ones that are most

similar. The Web page parts that are not 100% similar are considered to have been changed.

3.1 General design

To speed up the process of web change detection to the greatest extent, the design of the

detection system implemented several hashing-based techniques for direct lookup of subtree

node information during comparisons, and eliminated irrelevant node comparisons by limiting

them to nodes of the same type (i.e., same HTML tag). We build on the system in [10], which

describes a complete framework for detecting changed parts in Web pages, and as such we will

refer to it throughout the paper as the original approach and to our system as the enhanced

approach. More specifically, we improve on the performance of the original approach, which has

a running time in)(
3

12 NNO , through reducing the number of nodes in the edit mapping

between the updated page (with N2 nodes) and its previous version (having N1 nodes) by

restricting the similarity computations to nodes (corresponding to HTML tags) having the same

tag type. In contrast, and in order to reduce the number of valid edit mappings, the original

approach only considered the edges that have a similarity weight greater than a predefined

threshold in an attempt to remove the redundant nodes that do not have the same type as the

compared one. Moreover, it has to perform the similarity computation in order to evaluate the

similarity weight, while the enhanced approach avoids it altogether by simply comparing two tag

types. A second remark could be made concerning finding the most similar subtree. The original

approach scans the nodes of the updated page and divides the latter into variable subtrees

provided that their included number of nodes is less than four times the number of nodes in the

subtree of the selected zone in the original page. The factor of four was deduced from

experimental results. After the division, the algorithm proceeds to comparing all the nodes,

 8

computes nodes similarity, and then subtree similarity for every variable subtree until it finds the

one with the highest subtree similarity coefficient (i.e., the most similar one). In our case, two

subtrees are compared based on the similarities of their respective nodes having identical tag

types, regardless of their relative sizes. It should be mentioned though that this property

introduces one limitation associated with the enhanced approach concerning the inability

sometimes to detect changes when the root tag of a subtree is changed. We elaborate on this

limitation in Section 6 and explain that it does not pose a serious issue.

Another technique that we integrated into our enhanced approach is the use of hash tables to

significantly speed up the access to subtree nodes during the subtree comparison process. This

technique along with limiting node comparison to those with the same tag types have allowed for

achieving HTML web page change detection times that are in the order of seconds for very

complex web pages (reaching 1000 or more nodes). In fact, our system achieves speeds that

match those of O(nlogn) approaches, which were designed specifically to work with XML

documents, such as the X-Diff algorithm described in [27].

3.2 Extracted Information and Representation

The tree representation of the web page was implemented using XSLT and XPath. The

extraction of essential information from the XML file and transformation into a tree

representation was done with the help of the Oracle XSLT parser, where an XSL file was written

to meet the criteria of the desired output XML file. The designed XSL file divides the HTML file

into nodes where each one represents an HTML tag and such that for every node, the information

below is extracted (a sample is illustrated in Figure 2):

 Node (HTML tag) name that becomes the value of the attribute “element”, which is also

referred to as node.

 9

 Path from the root element (<HTML> tag) to the concerned element. HTML elements within

a path are separated by semicolons and are enclosed by the keyword type.

 Set of words associated with the tag or any of its child tags (referred to as weight).

 Set of attributes associated with the concerned HTML tag, and is repeated if there are more

than one attribute. The tag’s value is the HTML attribute value while its name constitutes the

attribute of the attribute element.

Figure 2. Example Tree-node output after XSL parsing

Next, we follow the same terminology as in [10] to represent the extracted information:

 Ti is a subtree in the document tree T, and encloses all nodes between the open and closed

tags of ir . Since we will be dealing with two trees TB

1
B and TB

2 representing two Web pages,

their respective subtrees are denoted by 1

iT , i=1,…,I and 2

jT , j=1,…, J. Hence, I and J are

the number of subtrees in TB

1
B and TB

2 respectively.

 Nlvl(ir) is called Node Level and is the number of ancestors that element ir
has from the root

node <HTML> to itself (inclusive).

 Slvl is called Subtree Level and is the level according to which nodes are grouped together. It

signifies the common node level Nlvl among all nodes in the same subtree. For example, Slvl

=3 divides the HTML page to sub-parts directly below the <BODY> tag as shown in Figure 3.

The subtree level Slvl is set to 3 as to allow for grouping the HTML nodes as subtrees

directly below the BODY tag. By defining the subtrees at level 3, it is ensured that all nodes in

<html>

 <body>

 ...

 <tag0 tattr=tvalue>

 content</tag0>

 <tag1> cont1 </tag1>

 ...

 </body>

</html>

...

<node element =“tag0”>

 <type>html;body;...;tag0;</type>

 <weight node=”tag0”>content

 </weight>

 <attribute name=“tattr”>tvalue

 </attribute>

</node>

...

X
S

L
 T

ra
n

sf
o

rm
at

io
n

 10

the page are accounted for. This however does not imply that the granularity of subtrees is

limited to that of the subtrees strictly at level 3, as it also concerns subtrees at lower levels. We

note that an Slvl greater than 3 will neglect relevant nodes, which may lead to undetected

changes, while an Slvl smaller than 3 will model the whole page as one big subtree that starts at

the BODY tag. Moreover, the tags that come before the BODY tag usually refer to HTML meta-

tags or scripting code (e.g., JavaScript). In this regard, it is worth mentioning that the original

approach apparently included the above described meta-tags in the comparison process.

Figure 3. Illustration of nodes and subtrees: numbers next to nodes are node IDs

3.3 Framework Steps

The basic task of the system is to detect changes that occurred to a Web page relating to

content, layout (structure), and attributes. Given two pages P1 and P2 (updated version of P1),

the detection process comprises several steps that involve P2, while assuming that P1 was

previously parsed and stored. P2 is first cleaned from possible HTML anomalies and then

<html>

 <body>

<tag0 attr=tvalue>

 content

 <tagn>...</tagn>

 <tagm>

 <tagu>...</tagu>

 ...

 </tagm>

</tag0>

<tag1> ... </tag1>

...

 </body>

</html>

t(tag0) = (html;body;tag0;)

w(tag0) = (content;)

a(tag0) = (tattr/tvalue)

tag1

html

<body>

--------- Nlvl = 1

-------- Nlvl = 2

 - Nlvl = 3

------- Nlvl = 4

--------- Nlvl = 5

…

…

.

.

.

.

.

.

.

.

.

Subtree Ti

Slvl = 3

1

2

3

4

q

p

n

tagm tagn

tagu

tag0

 11

transformed into a tree, in which each node represents a tag of the Web page and holds

information and properties about it. In order to use P2 for future comparisons, the created XML

file by the XSL transformation is stored on disk and then parsed into a hash table when needed

(described in subsection 3.3.2). The subtrees within the tree of P2 are next scanned for node

types (referred to as marks) that will form the basis of the performance improvement made to the

web change detection problem. The similarity coefficients of the compatible nodes are then

calculated for each subtree in P1. Out of the individual node similarities, a similarity for each

subtree of P1 is computed relative to all the subtrees of P2. With this data, the most similar

subtree in P2 is identified for each subtree in P1. A change would then have occurred if the

similarity coefficients of the most similar subtrees are different than 1.

In the following, each step is described in more details in a separate subsection.

3.3.1 Web page cleaning

Web page cleaning is implemented using HTML Tidy [12], which has many features,

including detecting and correcting missing or mismatched end tags plus correcting end tags that

are out of order. At the end of this phase, the processed HTML file is saved as an XML structure.

It should be noted that although the output of Tidy is an XML structure, the markup remains

HTML, and thus the same issues that were discussed in Section 2 still hold.

3.3.2 Page hashing and subtree generation

To improve performance of the detection process, the nodes of the entire web page to be

compared are hashed into a table. This table is extensively used during the)(2NO subtrees

comparison process in which the nodes of each subtree in the updated page are compared to

nodes in all the subtrees of the reference page that have similar marks. The hash table for the

reference web page is saved on disk after its creation along with the subtree table that is

 12

described below. It is later read into memory when a new version of the web page is downloaded

for the purpose of detecting changes relative to the reference page. The hash table is created by

reading into a tree-like list (using the Java NodeList class) the XML file obtained by XSL

transformation. The hash table is populated by fetching nodes from the list and examining them

for the following attributes that become data members of the hash table: node_id, node

(node’s HTML tag name), type (path from root to the node), att_name, att_value, and

weight (defined above). The node_id is the key that maps to a position in the hash table

using one to one mapping. Table 1 presents an example of a part of a hash table.

row node_id node type att_name att_value weight

24 25 Div html;body;div; Id logo NULL

25 26 A html;body;div;a; accesskey 1 NULL

26 27 Img html;body;div;a;img; Alt NULL NULL

27 28 Div html;body;div; Id Date Jan 1, 2006

Table 1. A part of an example hash table

The generation of the subtrees was done while hashing the page by checking the depth of

each node: if it is 3 then a new subtree begins with the current node being its starting node, and

the preceding node being the last node of the previous subtree (the last node of the page is the

last node of the last subtree). Simultaneously, each subtree is given its corresponding mark,

which is the mark of the first node of the subtree (level 3). The generated subtrees along with

their marks are stored in a specifically designed table that comprises the columns Mark,

Start_id, and End_id. As an example, node 25 in Table 1 (div node) has level 3 and

encloses a subtree of all elements beneath it until the next node with level 3 is encountered,

which happens to be node 71 (p node, as shown in Table 2).

Mark Start_id End_id

Div 25 70

P 71 71

div 72 120

 13

div 121 186

P 187 187

P 188 223

P 224 224

Table 2. Example of a subtree table

3.3.3 Subtree Comparison and Mapping

To further improve performance, a look up table (LUT), which contains references to the

subtrees of the second page, was employed. It is made of an array of lists (illustrated in the

example below of Figure 4), whereby each array slot corresponds to a mark (p, img, div, a,

ol, ul, …), while each list contains references to the subtrees in the second page having the

same mark. Actually, these references are row positions in the subtree table. For instance and as

shown in Figure 4, the div tag corresponds to rows 0, 2, and 3 in Table 2. This arrangement

minimizes comparison time, since searching for the subtrees of a specific mark can be done in

O(1) instead of O(n) sequential search through the whole subtree table.

Figure 4. Look up Table (LUT) example

To store comparison results for use later in the node mapping operation, a temporary table is

created that includes seven columns (node_id1, node_id2, attribute, type,

weight_position, weight_total, and CS). The columns weight_position and

weight_total correspond respectively to the numerator and denominator used in (1) to

figure out the content similarity between two subtrees, while attribute corresponds to the

0 2

3

1 4 5 6

 14

attdist computed in (2), and type is typedist calculated in (3) . The algorithm iterates over the

subtree table of the first (reference) page, and compares the current subtree with all the subtrees

having the same mark in the second page (with the aid of the LUT of the second page). Actually,

this involves comparing the nodes in the current subtree with those in the subtrees with the same

mark, by making use of the hash table to directly access the data associated with the desired

nodes. It should be noted that memory is allocated only for comparing one subtree, which

involves computing the number of rows in the temporary table, as follows. Having the mark of

the subtree of the first page, the LUT gives the references to all the matching rows in the subtree

table (i.e., pointers to the subtrees of the same mark in the second page). For each one of those

subtrees, the number of nodes is calculated (end2-start2+1: retrieved from the subtree table) and

next multiplied by the number of nodes in the considered subtree of the first page. The sum of all

the multiplications (i.e., for all matching subtrees of the second page) is then the total number of

rows for which memory is allocated.

Node mapping is then applied to find the most similar subtree from the second page to the

considered subtree of the first page. This continues for the consequent subtrees, where memory is

reclaimed and then allocated.

3.3.4 Subtree similarity Computations

To describe the computations, we first define variables that represent elements of the subtree:

 m denotes the set of element types (marks) that are detected in all subtrees. For HTML,

usually this set mostly includes <TABLE>, , <LIST>, <A>, and <P>. We consider

that m consists of K possible elements (i.e., tags that are found in T). Moreover, we define mi

as the set of subtree marks that denotes the group of element (HTML tag) types contained in

subtree TBiB (i.e., mi m)B. For example, if subtree TBiB contains an image and an unordered list,

 15

then mi ={UL, IMG}. Also,
ki

m mi denotes a mark found in subtree TBi, with k{1, 2, …,

K} being the kth index in the set m.

 If { 1r , 2r , …, ir } is the path from the root node 1r to the node ir then, type(ir) is the

concatenation of corresponding HTML elements starting from the root of the tree and ending

at ir . Here, a node refers to an open tag plus its corresponding closed tag.

 1

, kmpir is the pth element of subtree 1

iT having mark km m, and
2

, kmqj
r is the qth element of

subtree 2

jT having the same mark km .

 w(ir) is the set of words in the text associated with the leaves of subtree rooted at node ir . In

w(
1

, kmir), the superscript denotes the page index (1 for stored page and 2 for new page), while

mk denotes a subtree mark corresponding to the kth HTML tag in the set of possible tags.

 a(ir) is the set of attributes associated with ir . Hence, in a(
1

, kmir), the superscript and

subscripts have the same meanings as those in w.

The word content similarity between two nodes is expressed using the definition of the

function Intersect, which returns the percentage of words appearing in both w(
1

, kmir) and w(
2

, kmjr):

Intersect(w(
1

, kmir), w(
2

, kmjr)) =
|)()(|

|)()(|

2

,

1

,

2

,

1

,

kmjkmi

kmjkmi

rr

rr

ww

ww

 (1)

For computing the similarity between node attributes, the function Attdist is used:

Attdist(a(
1

, kmir), a(
2

, kmjr)) =

)}()({

)}()({

2
,

1
,

2
,

1
,

)(

)(

kmjkmil

kmjkmil

rra l

rra l

aWeight

aWeight

aa

aa
 (2)

The above function gives a measure of the relative weight of the attributes that have the same

value in
1

, kmir and
2

, kmjr with respect to all their attributes. As indicated in Equation 2, specifically

 16

the function Weight(al), the attributes are weighted differently according to their relevance of

use. For example, HREF is considered more relevant than the formatting attribute rules.

Attribute weights vary between 0, least important, and 100, most important. Some of the

attributes weights were assigned according to their frequency of use, as specified in [30], and

stored in an XML file, which is read by the application when it is first started (independent of the

web comparison process) into a look up table that holds the attributes as "strings" in one column

and weights as "integers" in the other column.

To compute the similarity between the paths from the root nodes of T1 and T2 to the

considered nodes
1

, kmir and
2

, kmjr respectively, the function “Typedist” is used:

Typedist(type(
1

, kmir), type(
2

, kmjr)) =
)2(

)2(
max

0

max

0

i

i

isuf

i

 (3)

where suf and max represent, respectively, the length of the common suffix (number of common

nodes from root to the two concerned nodes, i.e., number of common HTML tags) and the

maximum cardinality (number of HTML tags of the longest path) between type(
1

, kmir) and

type(
2

, kmjr).

Now, having the characteristics for the two nodes
1

, kmir and
2

, kmjr , the similarity between

them, given they have the same subtree mark mk, is computed as follows:

CS(
1

, kmir ,
2

, kmjr) = -1+2×(α×Typedist(type(
1

, kmir), type(
2

, kmjr))+

β×Attdist(a(
1

, kmir),a(
2

, kmjr))+γ×Intersect(w(
1

, kmir),w(
2

, kmjr)))
(4)

where α, β, and γ are weights such that α + β + γ = 1. Moreover, the values of α, β and γ are

selected on the basis of emphasizing certain types of changes and for normalizing the output

result of CS. It is obvious from (4) that the returned similarity varies between (-1, 1], where -1

corresponds to maximum difference and 1 to maximum similarity.

 17

3.3.5 Determining Subtree similarities

After computing the node CS values, the next step is to calculate similarity coefficients

between subtrees. Given two subtrees 1

iT and 2

jT belonging to trees T1 and T2, a mapping

M(1

iT , 2

jT) from 1

iT to 2

jT with 1

iS and 2

jS as their respective sets of nodes, and 1

, kmpir and

2

, kmqj
r being respectively the pth and qth nodes belonging to 1

iT and 2

jT and having the same

mark mk, the Subtree Source Node Similarity is given by:

),(21
jiM

Sim
TT

(1

, kmpir) =)),((2

,

1

, kmqjkmpi rrCSmax 2

, kmqj
r 2

jT (5)

That is, for each node in subtree 1

iT the above finds the most similar node in 2

jT .

Next, the similarity of two subtrees 1

iT and 2

jT having nodes of the same mark,
1

, kmir
1

iT

and
2

, kmjr
2

jT , is defined as follows:

SimM(1

iT , 2

jT) =
i

P

p

miM

P

rSim
i

kpji

1

1

,),(
)(21

TT

(6)

The above states that the similarity of each pair of subtrees belonging to T1 and T2 is the average

similarity taken across all nodes of 1

iT (Pi is the number of nodes in 1

iT).

Finally, the Document Subtree Similarity is the maximal subtree similarity between 1

iT and

2

jT T2, as defined in (7) below. The value of Sim(1

iT , 2

jT) indicates whether a change took

place inside the subtree or not: a value of 1 implies no change has occurred in this subtree, while

a value less than 1, means a change has taken place. Usually, one is not directly interested in the

node where the change took place, but rather in the subtree where the changed node resides.

Sim(1

iT , 2

jT) = max (SimM(1

iT , 2

jT)) 2

jT T2 (7)

 18

4. Performance Results

To produce relative performance results, both the enhanced and original approach were

implemented. Tests were performed on a 1.8 GHz Pentium M NEC laptop, model i-Select

M5410, running Windows XP SP2, with 1 GB RAM, and 1MB cache. For implementation, Java

was used to program the functionality of both approaches, Tidy [12] for cleaning HTML web

pages and tags, and Oracle Parser for parsing and building the XML trees.

4.1 Results Validation

Before proceeding with illustrating the performance results, we describe a procedure we used

to validate the results. We focused on a highly dynamic page (home page of CNN.com) and

downloaded from the way-back machine a total of 520 pages covering the whole year of 2006,

and therefore had an average of one to two pages per day. For this experiment, we conducted

three trials, each of which involved choosing four pages randomly from the pool of 520 pages

and comparing the next 20 pages that follow each one of those four pages to it using a balanced

configuration (4,3,3). The obtained results showed major differences in the similarity coefficients

at the start, but became nearly constant at the end. The results are presented in Figure 5, where

the y-axis represents the fraction of the page that has been changed, which was computed by

differentiating the similarity coefficients (note that it uses a log-scale). The graph reveals a linear

trend, which indicates an exponential decay and corresponds to a Poisson distribution that

resembles the output reported in [6]. In this regard, it should be mentioned that the web change

frequency has been studied in the literature and modeled as a Poisson distribution [21] [2] [6].

The reason for choosing 20 pages for this experiment is because they correspond to 10 days

of monitoring, after which the web page contains content that is mostly new, as evidenced by the

fact that the similarity coefficients tended to an asymptote toward the end of the comparison.

 19

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

0 4 8 12 16 20

Comparison time instance (relative to initial)

F
ra

c
ti

o
n

 o
f

p
a
g

e
 c

h
a
n

g
e

Figure 5. Web page change fraction versus time

The resemblance that exists between the results shown in Figure 5 and those reported in [6]

(which is in turn referenced in many other works) may be used to make inferences about the

reliability of the output that our approach produces.

4.2 Presentation of Results

For the performance tests, over 250 web pages were downloaded from the Internet in order to

run tests for assessing the relative performance of the proposed approach. Table 3 illustrates the

types of these pages along with statistics that describe their content and size. From this

collection, 26 representative Web pages were chosen.

Type
of

pages

Content range (number of items) Size range

(# of nodes) Links Figures Tables Lists Text Scripts

News sites 56 15 - 40 15 - 40 5 - 10 5 - 10 60 - 1000 15 - 40 60 – 950

Personal sites 12 5 - 10 3 - 5 5 – 10 15 - 40 60 – 1000 0 - 3 10 – 670

Academic sites 42 10 - 15 5 - 10 15 - 40 15 - 40 40 – 60 2 - 15 30 – 440

Commercial sites 104 10 - 15 5 - 10 15 - 40 15 - 40 40 – 60 10 - 15 20 - 1060

Online documentation 20 10 - 15 15 - 40 15 - 40 10 - 15 60 - 1000 0 - 10 240 - 2920

Wikipedia sites 20 > 600 10 – 50 10 - 30 40 - 200 50 - 300 5 - 15 1630 - 3010

Table 3 Types and distribution of Web pages that were used in the study

The experiments focused on the performance of the approach in terms of the number of node

similarity computations and the time consumed to completely produce and store the similarity

 20

coefficients. For every Web page tested, we noted the number of node comparisons for both the

enhanced and original algorithms. Figure 6 shows the number of saved similarity computations

plotted on a logarithmic scale to illustrate the improvements for small and large Web pages. One

can notice the savings depicted as percentages as well, which translate to appreciable time

savings, especially for large web pages. The data in the figure reveals that our approach is faster

by at least 30% for pages having more than 500 nodes, while for less than 500 nodes, we still

observe savings that can add up to significant times when many pages are processed.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100 600 1100 1600 2100 2600 3100

Number of HTML nodes

#
 o

f
s
im

il
a
ri

ty
 c

o
m

p
u

ta
ti

o
n

s

0%

10%

20%

30%

40%

50%

60%

70%

P
e
rc

e
n

t
c
o

m
p

u
ta

ti
o

n
s
 s

a
v
e
d

Number of computations

% computations saved

Figure 6. Saved node similarity computations

Figure 7 shows the average change detection time measured after running the enhanced

algorithm 10 times on each pair (modified and original) of the 26 Web pages. This time includes

reading the updated web page, building the hash and subtree tables, doing the comparisons and

computing the similarity coefficients, and inferring the updated subtree mapping. The results in

Figure 7 illustrate that pages with less than 500 nodes (40KB on average) can be processed and

compared in less than 2 seconds while those that have about 1000 nodes can be compared in

about 8 seconds. The figure also shows that the detection process is mostly consumed by subtree

 21

node comparisons. In fact, the total time it takes to clean and parse the HTML document into an

XML file, plus building the hash table and identifying the subtrees along with building the

subtree table, is close to one tenth of the time consumed by comparing the nodes and computing

the similarity coefficients. This demonstrates the key role of the hashing mechanisms that was

integrated for providing direct in-memory access to node information during the comparisons.

Related to processing time, the work in [17] describes an analysis of over 21,000 web pages

that were surveyed using three methods of seed generation via search engines. The first was the

Yahoo random page CGI, which redirects to a random URL, the second used the Open Directory

Project (ODP) database [23] to randomly select seed documents, while the third utilized two

random English words as a query to the Google search engine and then used the top ten

documents as seeds for the crawl. The average size of HTML web page was found to be 281 tags

(nodes). For pages of this size, our proposed HTML web change detection approach can

complete the detection process in less than one second (0.87 second on average).

0

1

10

100

0 500 1000 1500 2000 2500 3000

Number of HTML nodes

C
h

a
n

g
e
 d

e
te

c
ti

o
n

 t
im

e
 (

s
e
c
.)

Processing 2nd Page

Comparison + Mapping

Total

Figure 7. Change detection times for original and enhanced approaches

 22

Next, the detection level is studied by applying different values of , , and while

processing the web pages used for testing. For this, different versions of those pages were

downloaded from the way back machine, and then each parameter, e.g., , was varied between 0

and 1 in increments of 0.2, while each of the other two parameters, e.g., and , was set to half

of the remainder, e.g., = = (1-)/2. For each combination of , , and , the different versions

of each web page were processed, and the measured similarity coefficients for each page when

compared to the previous version were stored on disk, as was mentioned earlier. Each

coefficient’s value that is not equal to one was considered a change. Figure 8 plots the detection

reliability, which we define as the ratio of the number of detected changes to that of the actual

ones. The figure illustrates the computed reliability when considering each type separately (i.e.,

content, attribute, or style), and when considering the overall changes across all types. The

former case was meant to study the effect of the , , and emphasis parameters on the changes

they relate to (i.e., style, attribute, and content, respectively). The “Overall” curve corresponds to

the weighted average, which is why it drops dramatically when any of the parameters’ values is

one (implying that the other two parameters were set to zero), or is zero (in which case the values

of the other two parameters sum up to one). For example, the left-most part of the graph

illustrates the case where one of the parameters (, , or) is set to zero, whereas each of the

other two is set to 0.5. In this situation, the system is able to detect changes associated with the

two non-zero valued parameters, thus giving a detection reliability close to two thirds. The right-

most part, on the other hand, depicts the case where two of the parameters are set to zero,

whereas the remaining one is set to 1. Here, the system is able to detect changes associated with

the one non-zero valued parameter, thus giving a detection reliability very close to one third.

 23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter (Gamma, Beta, or Alpha) value

D
e
te

c
ti

o
n

 r
e
li
a
b

il
it

y
Content (Gamma)

Attribute (Beta)

Style (Alpha)

Overall

Figure 8. Detection level relative to maximum number of detections

Several remarks can be made about the graph in Figure 8. The update detection is generally

independent from the emphasis parameters when their values are not equal or close to zero. This

comes from the fact that in our implementation there is no differentiation on the basis of how

significant the change is. That is, if the subtree similarity coefficient value is different than 1,

even by a small amount, a change is declared. A value near zero for one of the three parameters

will eliminate the corresponding coefficient’s participation in the overall similarity calculation

and will therefore weaken the detection of a change if it is of the corresponding type. The above

suggests that the parameters , , and can take on Boolean values without affecting the

functionality of the system. However, the coefficient of similarity (CS) expression in Equation 4

requires numeric values for these parameters and that their sum is equal to 1. Obviously, these

parameters could be of more use if changes are to be classified according to their severity, in

which case the estimated severity of the change could be directly related to the distance of the

similarity coefficient from 1. Then one can visualize the magnitude of the changes right on the

updated page using, for example, color coding or some other mechanism.

4.3 RSS Feeds Change Detection

 24

The proposed change detection algorithm has also been applied to RSS feeds that may be

present in certain web pages. RSS (Really Simple Syndication) is a format for delivering

regularly changing web content, such as news. The most common standard for this format is RSS

2.0, which is used by more than 80% of the web sites [26] that publish dynamic content,

including Microsoft, CNN, Google News, Yahoo News, and AFP. RSS content is defined in an

XML file, consisting of one channel per feed that includes many items which represent stories

or events, and each item comprises attributes that include title, description, publication date, and

so on [25]. Many websites, however, ignore other attributes that are optional, although important

(like the guid), and only supply title and description. As a consequence, we only rely

on the latter two attributes when applying the detection algorithm, which makes the mapping

process between feeds reliable, yet more complex.

To include RSS feeds in the comparison process of two web pages, we need to define criteria

for detecting changes. In [1], two criteria to monitor news are defined, and since RSS mainly

represent news and events, we will adopt the same criteria (termed event detection and event

tracking) and apply our algorithm so that each RSS feed becomes a subtree represented by an

RSS tag (e.g., RSS news or RSS sports) so as to avoid comparing non-compatible RSS feeds to

each other. Each RSS tag encompasses a subtree consisting of the items mentioned above. The

description of the item is analogous to the weight definition mentioned before while the title is

analogous to the attribute. We note that type, which represents the Path from the root element,

has no relevance in comparing RSS feeds. Finally and similar to alpha and beta, we empirically

assigned 30% of the comparison weight to the title and 70% to the description.

Now concerning the detection process, when an RSS tag is encountered when a page is being

retrieved, the XML file is processed and then hashed in a manner similar to the web page. All

 25

items are then compared to each other using the similarity functions employed for the main page

(i.e., (1) and (2)), and the similarity coefficients are stored in a special array. Then a mapping is

applied to define the nearest item in the second file to each item in the first file, which is done by

finding the item of the next page which corresponds to the highest similarity coefficient.

To classify the type of change, the similarity coefficient of the mapping between two items

will be used as indication that the item was modified if it is positive (less than 1), and that the

item of the first page was removed if the coefficient is negative. As for added items, every

mapped item of the second page is traversed to see if it is not mapped to any item in the first

page (does not exist), or if it is only mapped to item(s) in the first page with negative similarity

coefficient(s). In such cases, it will be concluded that the item was added.

Table 4 illustrates an example of a comparison between two RSS feeds retrieved from

yahoo.com on Sep 3, 2007 at 11:30 GMT and then at 15:46 GMT. From the perspective of the

first page (P1), we observe that items 8, 13, 15, 16, and 18 were not modified, items 1, 2, 3, 14,

and 20 were modified, while items 4, 5, 6, 7, 9, 10, 11, 12, 17, and 19 were removed. Now, from

the perspective of the updated page (P2), we deduce that items 1, 5, 7, 9, 10, 11, 18, and 19 were

added. We should stress while examining the coefficient values that Table 4 only shows the titles

that only make up 30% of the weight, and does not reveal the descriptions that account for 70%.

 26

Table 4. An example of mappings between news feeds (based on title and description)

6. Discussion and Conclusion

This paper described an improved Web change detection approach based on restricting the

similarity computations to subtree nodes having the same HTML tag, and hashing the web page

for direct in-memory access to node information. A practical server application was developed to

allow for scheduling web page monitoring jobs and producing reports and graphs against stored

similarity data that describe processed comparisons between a page and its previous version(s).

Performance measurements using a group of web pages selected from a pool of over 200 pages

showed that the enhanced algorithm can perform change detection in the order of seconds for

small and medium-sized web pages, and in the order of few tens of seconds for large web pages.

Item

P1

Item

P2

Similarity

Coefficient
Item Title 1 Item Title 2

1 2 0.227523 Felix becomes Category 5 hurricane Felix becomes Category 5 hurricane

2 3 0.143421 Power outage from California heat wave Calif. heat leaves 14,000 without power

3 4 0.52088 Britain pulls out from Basra base Britain pulls out of downtown Basra base

4 10 -0.11353 Lines at United States borders longer Bush makes war assessment in Iraq

5 5 -0.61324 Girl, 13, found dead in Ariz. mine shaft Iranian-American scholar leaves Iran

6 6 -0.47722 Lebanese army hunts for fugitives Rocket lands by Israeli day care center

7 12 -0.53326 Scientists test new bipolar remedies Women may need different heart treatment

8 8 1 Report: U.S. workers are most productive Report: U.S. workers are most productive

9 5 -0.6372 Movie studios bask in blockbuster summer Director says Owen Wilson's doing better

10 10 -0.49718 Serena, Henin to square off at U.S. Open Federer, Roddick highlight Open today

11 4 -0.46826 British troops quit Iraqi city of Basra Bush holds “war council” with top aides in Iraq

12 12 -0.08292 Felix becomes rare top-ranked storm Hurricane Felix threatens Central America

13 13 1
N.Korea says U.S. to remove it from terrorism

list

N.Korea says U.S. to remove it from terrorism

list

14 14 0.785882 APEC set for world trade, climate change talks APEC set for world trade, climate change talks

15 15 1
Afghan Taliban vow to kidnap, kill more
foreigners

Afghan Taliban vow to kidnap, kill more
foreigners

16 16 1 Russian strategic bombers run Arctic exercise Russian strategic bombers run Arctic exercise

17 15 -0.58235 China vows to clean up toxins amid food scares
Edwards gets fresh union backing for White

House bid

18 17 1
Study finds smokers have higher risk of

dementia

Study finds smokers have higher risk of

dementia

19 5 -0.60234 Former Bangladesh PM Zia arrested UN chief in Sudan to push for Darfur peace

20 20 0.43125
Maximum strength Hurricane Felix aims for
Central America

Maximum strength Hurricane Felix aims for
Central America

 27

Concerning the limitation that was mentioned in Subsection 3.1, there are three situations in

which changes using our approach will not be detected:

1. A new tag is added directly below the <BODY> tag (at level 3) in the new page, given

that there is no tag of the same type at the same level in the old page.

2. A tag at level 3 in the new page is changed to a tag of type k, given that there is no tag of

type k at level 3 in the old page.

3. A tag of type j at level 3 in the new page is deleted, given that it is the only tag of that

type at that level in the old page, and that no other tag of type j now exists in the new

page at level 3.

Other than the above situations, the algorithm will always detect the changes. The important

question, however, is how probable are the above situations? To answer this question, we refer to

the study that was reported in [9], which analyzed the changes made to web pages by crawling

over 150 million HTML pages once a week, over a span of 11 weeks. Of concern to our work are

the types of changes made to the HTML markup. Out of the almost 1.5 million changes in the

markup that were detected (1% of the total sample size), 61% were for attribute changes, 32%

for adding or deleting attributes, and 6% for adding or deleting tags. The tags that were affected

(out of the 6%) were the <A> tag (48%), tag (10%), comments (23%), and the rest were

distributed among non-popular tags (<META>, <PARAM>, <INPUT>, etc.). The study did not

provide information concerning the position of the changed tags within the web pages, but

according to our relatively small set of web pages that we used for performance testing, we

noticed that the probability of the <A> tag falling directly below the <BODY> tag is less than 5%

while that of the tag is less than 15%. From the above data, it is very easy to see that the

probability of the three situations occurring in practice is very low (about 38 in one million).

 28

For future works, the algorithm can be parallelized through multithreading, which can

increase performance significantly. In particular, since each subtree of the original page (left

subtree) is compared to all similar subtrees of the updated page (right subtrees), one thread could

compare one or more left subtrees to all right subtrees and identify the most right similar subtree.

Given that the comparisons (for computing the similarity coefficients) are by far the most time-

consuming tasks of the algorithm, multithreading could potentially divide the running time of the

algorithm by M, where M is the number of threads. Another suggested future work involves the

application of this algorithm to the Deep (Hidden) Web, mostly concerning dynamic web pages

that are generated in response to submitted queries. Moreover, and since in this work we have

applied our algorithm to RSS feed changes, it should also be straightforward to handle online

blogs in a similar fashion knowing they are defined in XML files just like RSS contents are.

References

[1] J. Allan, R. Papka, and V. Lavrenko, On-line new event detection and tracking. In

Proceedings of the 21st international ACM SIGIR conference on research and

development in information retrieval, August 1998, pp. 37–45.

[2] B. Brewington and G. Cybenko, How dynamic is the web? In Proceedings of WWW2000,

March 2000.

[3] S. Chakravarthy, J. Jacob, N. Pandrangi, and A. Sanka, Webvigil: An approach to just-in-

time information propagation in large network-centric environments, 2nd International

Workshop on Web Dynamics, Honolulu, Hawaii, 2002.

[4] S. Chawathe, J. Widom, A. Rajaraman, and H. Garcia-Molina, Change Detection in

Hierarchically Structured Information, ACM SIGMOD international conference on

Management of data, Montreal, Canada, 1996, pp. 493-504.

[5] S. Chawathe and H. Garcia-Molina, Meaningful Change Detection in Structured Data,

ACM SIGMOD international conference on Management of data, v. 26, n. 2, 1997, pp. 26-

37.

[6] J. Cho and H. Garcia-Molina, Synchronizing a database to improve freshness,

SIGMOD Record, vol. 29, no. 2, pp. 117-128, June 2000.

[7] G. Cobena, S. Abiteboul, and A. Marian, Detecting changes in XML documents, 18th

International Conference on Data Engineering, San Jose, CA, 2002, pp. 41-52.

[8] F. Douglis, T. Ball, Y. Chen, and E. Koutsofios, The AT&T Internet difference engine:

tracking on the Web, World Wide Web, v. 1, 1998, pp. 27–44.

 29

[9] D. Fetterly, M. Manasse, M. Najork, A large-scale study of the evolution of Web pages,

Journal of Software - Practice and Experience, v 34, n 2, 2004, pp. 213-237.

[10] S. Flesca and E. Masciari, Efficient and Effective Web Change Detection, Data and

Knowledge Engineering, v. 46, n. 2, 2003, pp. 203-224.

[11] HTMLDiff, available from

http://www.componentsoftware.com/Products/HTMLDiff/index.htm.

[12] HTML Tidy, available from http://www.w3.org/People/Raggett/tidy/tidy.html.

[13] J. Hunt and M. Mcllroy, An Algorithm for Differential File Comparison, Technical Report,

TR #41, Bell Laboratories, Murray Hill, NJ, 1975.

[14] J. Jacob, A. Sache, and S. Chakravarthy, CX-DIFF: a change detection algorithm for XML

content and change visualization for WebVigiL, Data and Knowledge Engineering, v. 52,

n. 2, 2005, pp. 209-230.

[15] Z. Kaizhong, J. Wang, and D. Shasha. On the editing distance between undirected acyclic

graphs and related problems, 6th Annual Symposium on Combinatorial Pattern Matching,

Espoo, Finland, 1995, pp. 395–407.

[16] H. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics, v.

2, n. 1, 2005, pp. 7–21.

[17] R. Levering and M. Cutler, The portrait of a common HTML web page, In Proceedings of

the 2006 ACM symposium on Document engineering, 2006, pp. 198 – 204.

[18] S-J. Lim, and Y-K. Ng, An automated change-detection algorithm for HTML documents

based on semantic hierarchies, 17th International Conference on Data Engineering,

Heidelberg, Germany, 2001, pp. 303-312.

[19] L. Ling, T. Wei, D. Buttler, and C. Pu, Information monitoring on the Web: a scalable

solution, World Wide Web, v 5, n 4, 2002, pp. 263-304.

[20] L. Liu, C. Pu, and W. Tang, WebCQ - detecting and delivering information changes on the

Web, 9th International Conference on Information and Knowledge Management, Atlanta,

Georgia, 2000, pp.512-519.

[21] N. Matloff, Estimation of internet file access modification rates from indirect data, ACM

Transactions on Modeling and Computer Simulation, vol. 15, pp. 233–253, 2005.

[22] Netmind, available from http://www.changedetect.com/cd-netmind.asp.

[23] Open Directory Project database. http://rdf.dmoz.org/.

[24] Opernic Technologies, Copernic Tracker product, available online at

http://www.copernic.com/en/products/tracker/tracker-features.html.

[25] RSS 2.0 Specification, available online at http://cyber.law.harvard.edu/rss/rss.html

[26] RSS Feed statistics, available online at www.Syndic8.com/stats.php?section=feeds

[27] Y. Wang, D. DeWitt, and J. Cai, “X-Diff: An Effective Change Detection Algorithm for

XML Documents” International Conference on Data Engineering, Bangalore, India, 2003,

pp. 519-530.

[28] WebCQ product. Available: http://www.cc.gatech.edu/projects/disl/WebCQ

[29] WebSite-Watcher product. Available: http://www.aignes.com.

[30] A. Woodruff, P. Aoki, E. Brewer, P. Gauthier, and L. Rowe, An Investigation of

Documents from the World Wide Web, Computer Networks and ISDN Systems, v. 28, n. 7,

1996, pp. 963-980.

http://www.changedetect.com/cd-netmind.asp
http://rdf.dmoz.org/

