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ABSTRACT 

This paper describes a fast HTML Web page detection approach that saves computation time 

by limiting the similarity computations between two versions of a Web page to nodes having the 

same HTML tag type, and by hashing the web page in order to provide direct access to node 

information. This efficient approach is suitable as a client application and for implementing 

server applications that could serve the needs of users in monitoring modifications to HTML 

Web pages made over time, and that allow for reporting and visualizing changes and trends in 

order to gain insight about the significance and types of such changes. The detection of changes 

across two versions of a page is accomplished by performing similarity computations after 

transforming the Web page into an XML-like structure in which a node corresponds to an open-

closed HTML tag. Performance and detection reliability results were obtained, and showed speed 

improvements when compared to the results of a previous approach. 
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1. Introduction 

Changes occurring in web pages are best classified as content changes (e.g., deletions, and 

additions of text), layout change (e.g., changes in the position of elements in the page), and 

attributes change (e.g., changes in fonts and colors) [10]. Hence, in addition to tracking content 

changes, any useful detection system should also be able to track changes in layout. 

Most change detection approaches are computationally complex and require non-polynomial 

running time [4, 5]. Some of the well-known systems that fit the above characteristics are 

HTMLDiff [11], NetMind [22], WebCQ [20], WebVigiL [3], and CMW [10]. These basically 

work by estimating the rate of change that occurred between the reference web page and its 

updated version, and eventually locating the differences between them. 

In this work, we propose an efficient method for detecting web pages changes. It generates 

subtrees corresponding to elements that are directly connected to the BODY HTML tag. The tags 

found are used to mark the nodes in the subtrees belonging to the two pages being compared and 

are employed to limit the similarity computations to nodes having the same mark. Subtrees with 

the highest average similarity coefficients are considered to be the most similar. Using this 

information, changes in the updated version of the Web page are identified and located. 

Additionally, a scheme was employed to speed up the algorithm through hashing the web page in 

order to provide direct access to subtree nodes during the comparison process. 

2. Related work 

One challenge that has not been addressed sufficiently in the literature is the large time it 

takes to compare HTML web pages, a task that is necessary to detect and locate differences 

between them. This is because in order to infer changes between two HTML web pages, all the 

different HTML nodes (corresponding to content and attributes of tags) have to be compared, 
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typically leading to an NP-hard problem [4, 5]. In this regard, the approach in [10] uses 

the )( 3NO Hungarian algorithm to compute the maximum weighted matching on a weighted 

bipartite graph and has a running time in )(
3

12 NNO  , where N1 and N2 are respectively the 

number of nodes in the old page and in the new (changed) page. This running time becomes 

significantly large as the value of N1 is increased, i.e., as the selected region of interest in the old 

page (to be monitored for changes) is increased from a small portion to the whole page. 

An existing web change detection product is Copernic Tracker [24], which is a software 

aimed at monitoring websites. It can track changes in the text and images and monitor for the 

presence of specific text. The system however does not allow for specifying how much emphasis 

to place on monitoring different aspects of the Web page and does not provide a utility for 

restricting the detection to a specific zone. Furthermore, it does not reveal performance data that 

discusses speed or accuracy. A second product is WebSite-Watcher [29], which includes the 

ability to monitor pages behind logins. The system offers limited freedom for selecting a zone to 

monitor and lacks a proper user interface to show the changes. This system also does not provide 

objective performance data other than subjective user reviews. A third system is WebCQ [28], 

which offers personalized delivery of change notifications and summarization plus prioritization 

of changes. Notifications can be sent via email to the user reporting content changes only. These 

describe modifications to text, hyper-links, image references, and keywords, in addition to 

reporting modification date and page size changes. The authors however promise to implement 

into WebCQ a structure-aware change detection and difference algorithm in the future [19]. 

In terms of published research work, several papers were found that tackle the design of 

efficient algorithms for detecting changes in Web pages. In [7], [27] and [14], various diff 

algorithms are described for detecting changes in XML documents. The algorithm in [14] is 
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based on finding and then extracting the matching nodes from the two trees that are being 

compared. From the non-matching nodes, the change operations are next detected. Matching of 

nodes is based on comparing signatures (functions of node content and children) and order of 

occurrence in common order subsequences of nodes. The works in [7] and [27] use edit scripting 

to compare two documents and transform the pages to trees according to the XML structure. The 

strength of these algorithms lies in their low time-complexity, which is in the order of O(nlogn). 

However, this high performance cannot be achieved when comparing HTML documents as it 

relies on certain XML features. Edit scripting alone is not sufficient for achieving O(nlogn) or 

polynomial running time, especially if move operations (parts of the document are moved 

around) are to be considered. In fact, it has been shown that edit scripting with move operations 

is NP-hard [15, 5]. Basically, an edit script on a tree T1 is a sequence of operations (insertions, 

deletions, and updates) that generates another tree T2. The discussed diff algorithms consider that 

if a node in T1 is matched to a node in T2, then their parents are also matched. Under this 

convention, two trees that have unmatched roots can never include matches: if M is a matching 

from T1 to T2 then M=  if and only if (Root (T1), Root (T2))  M, according to [27]. Under 

this hypothesis, high performance can be achieved since a matching between two nodes can now 

be propagated bottom-upwards in the tree. Unlike HTML, XML enforces structure in that there 

are no unclosed and out-of-order tags, and more importantly, in a well-formed and typical XML 

document, children of some node tend to have a parent of a unique tag type. In the example 

below for instance, the tag type <book> is a unique child of the tag type <library>: 

<library><book>...</book><book>...</book></library> 

In other words, it is unlikely to find <book> as a child of another tag type. Typically, well 

formed XML documents are used for structuring data, and in that context, the hierarchy tends to 
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be quite well defined. However, in HTML markup, this relationship between tag types and their 

ancestors does not hold, as we obviously can have the same tag type present in several subtrees 

that are rooted at different nodes. For such reasons, the parsing and matching of HTML is much 

more difficult [18]. 

The work in [10] transforms an HTML document into a tree structure and categorizes node 

information into content, structure, and attributes. Three similarity measures are used to detect 

changes of these three categories: intersect (percentage of similar words), typedist (measure of 

the position of the elements in the tree), and attdist (measure of the relative weight of similar 

attributes), respectively. In searching for the most similar subtree between two pages, the system 

supposedly uses the Hungarian algorithm [16], but no details on its use are given. The 

experimental results only show the effects of the emphasis measures on detection accuracy and 

do not discuss speed performance. It should be mentioned that this approach is able to detect 

node type changes (e.g., a UL node changing to an OL node, or vise versa, in the document tree) 

whereas our proposed approach applies the node comparison between same types, and thus will 

not detect such changes. An earlier change detection system was described in [8]. This system, 

which was called AIDE, provides personalized views of how pages on the Internet change. It 

uses the so-called HtmlDiff algorithm, which is built on top of the UNIX diff utility [13]. It tries 

to find a common (not necessarily contiguous) subsequence of two sequences of words that has 

the longest length. Although the system was designed as a server application, no speed 

performance data was discussed. 

3 Improved detection framework 

The operation of the proposed approach is generally depicted in Figure 1. The entire process 

is started by the crawler, which is launched by a daemon process that runs periodically. Every 
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time this process runs, it checks a schedule to determine if there are Web pages that need to be 

downloaded and subsequently compared to their corresponding stored versions. The schedule in 

turn is populated through a user interface that allows the user to specify the web page to monitor 

in addition to supplying information that controls the monitoring process. Moreover, when a user 

adds a URL to the list of pages to be monitored, he or she can specify a zone within the page that 

limits the change detection to this zone. At the conclusion of each change detection occurrence, 

the application writes to the disk data that describe the changes and their locations within the 

page. This allows the user or another program to query the application to view the actual changes 

on the page itself (highlighted), to generate reports that describe the type and significance of 

changes, or to plot the changes history.  

 

 

Figure 1. General diagram of proposed approach 

Change detection is accomplished by comparing the newly-downloaded Web page to a 

previously-downloaded version stored on disk. Detection is based on calculating the similarity 
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among the different parts of two HTML documents and on deducing the ones that are most 

similar. The Web page parts that are not 100% similar are considered to have been changed. 

3.1 General design 

To speed up the process of web change detection to the greatest extent, the design of the 

detection system implemented several hashing-based techniques for direct lookup of subtree 

node information during comparisons, and eliminated irrelevant node comparisons by limiting 

them to nodes of the same type (i.e., same HTML tag). We build on the system in [10], which 

describes a complete framework for detecting changed parts in Web pages, and as such we will 

refer to it throughout the paper as the original approach and to our system as the enhanced 

approach. More specifically, we improve on the performance of the original approach, which has 

a running time in )(
3

12 NNO  , through reducing the number of nodes in the edit mapping 

between the updated page (with N2 nodes) and its previous version (having N1 nodes) by 

restricting the similarity computations to nodes (corresponding to HTML tags) having the same 

tag type. In contrast, and in order to reduce the number of valid edit mappings, the original 

approach only considered the edges that have a similarity weight greater than a predefined 

threshold in an attempt to remove the redundant nodes that do not have the same type as the 

compared one. Moreover, it has to perform the similarity computation in order to evaluate the 

similarity weight, while the enhanced approach avoids it altogether by simply comparing two tag 

types. A second remark could be made concerning finding the most similar subtree. The original 

approach scans the nodes of the updated page and divides the latter into variable subtrees 

provided that their included number of nodes is less than four times the number of nodes in the 

subtree of the selected zone in the original page. The factor of four was deduced from 

experimental results. After the division, the algorithm proceeds to comparing all the nodes, 
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computes nodes similarity, and then subtree similarity for every variable subtree until it finds the 

one with the highest subtree similarity coefficient (i.e., the most similar one). In our case, two 

subtrees are compared based on the similarities of their respective nodes having identical tag 

types, regardless of their relative sizes. It should be mentioned though that this property 

introduces one limitation associated with the enhanced approach concerning the inability 

sometimes to detect changes when the root tag of a subtree is changed. We elaborate on this 

limitation in Section 6 and explain that it does not pose a serious issue.  

Another technique that we integrated into our enhanced approach is the use of hash tables to 

significantly speed up the access to subtree nodes during the subtree comparison process. This 

technique along with limiting node comparison to those with the same tag types have allowed for 

achieving HTML web page change detection times that are in the order of seconds for very 

complex web pages (reaching 1000 or more nodes). In fact, our system achieves speeds that 

match those of O(nlogn) approaches, which were designed specifically to work with XML 

documents, such as the X-Diff algorithm described in [27]. 

3.2 Extracted Information and Representation 

The tree representation of the web page was implemented using XSLT and XPath. The 

extraction of essential information from the XML file and transformation into a tree 

representation was done with the help of the Oracle XSLT parser, where an XSL file was written 

to meet the criteria of the desired output XML file. The designed XSL file divides the HTML file 

into nodes where each one represents an HTML tag and such that for every node, the information 

below is extracted (a sample is illustrated in Figure 2):  

 Node (HTML tag) name that becomes the value of the attribute “element”, which is also 

referred to as node. 
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 Path from the root element (<HTML> tag) to the concerned element. HTML elements within 

a path are separated by semicolons and are enclosed by the keyword type. 

 Set of words associated with the tag or any of its child tags (referred to as weight). 

 Set of attributes associated with the concerned HTML tag, and is repeated if there are more 

than one attribute. The tag’s value is the HTML attribute value while its name constitutes the 

attribute of the attribute element. 

 
Figure 2. Example Tree-node output after XSL parsing 

Next, we follow the same terminology as in [10] to represent the extracted information: 

 Ti is a subtree in the document tree T, and encloses all nodes between the open and closed 

tags of ir . Since we will be dealing with two trees TB

1
B and TB

2 representing two Web pages, 

their respective subtrees are denoted by 1

iT , i=1,…,I and 2

jT , j=1,…, J. Hence, I and J are 

the number of subtrees in TB

1
B and TB

2 respectively. 

 Nlvl( ir ) is called Node Level and is the number of ancestors that element ir  
has from the root 

node <HTML> to itself (inclusive). 

 Slvl is called Subtree Level and is the level according to which nodes are grouped together. It 

signifies the common node level Nlvl among all nodes in the same subtree. For example, Slvl 

=3 divides the HTML page to sub-parts directly below the <BODY> tag as shown in Figure 3. 

The subtree level Slvl is set to 3 as to allow for grouping the HTML nodes as subtrees 

directly below the BODY tag. By defining the subtrees at level 3, it is ensured that all nodes in 

<html> 

  <body> 

    ... 

    <tag0 tattr=tvalue>   

       content</tag0> 

    <tag1> cont1 </tag1> 

    ... 

  </body> 

</html>  
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  <type>html;body;...;tag0;</type> 

  <weight node=”tag0”>content 

  </weight> 
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the page are accounted for. This however does not imply that the granularity of subtrees is 

limited to that of the subtrees strictly at level 3, as it also concerns subtrees at lower levels. We 

note that an Slvl greater than 3 will neglect relevant nodes, which may lead to undetected 

changes, while an Slvl smaller than 3 will model the whole page as one big subtree that starts at 

the BODY tag. Moreover, the tags that come before the BODY tag usually refer to HTML meta-

tags or scripting code (e.g., JavaScript). In this regard, it is worth mentioning that the original 

approach apparently included the above described meta-tags in the comparison process.  

 
Figure 3. Illustration of nodes and subtrees: numbers next to nodes are node IDs 
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transformed into a tree, in which each node represents a tag of the Web page and holds 

information and properties about it. In order to use P2 for future comparisons, the created XML 

file by the XSL transformation is stored on disk and then parsed into a hash table when needed 

(described in subsection 3.3.2). The subtrees within the tree of P2 are next scanned for node 

types (referred to as marks) that will form the basis of the performance improvement made to the 

web change detection problem. The similarity coefficients of the compatible nodes are then 

calculated for each subtree in P1. Out of the individual node similarities, a similarity for each 

subtree of P1 is computed relative to all the subtrees of P2. With this data, the most similar 

subtree in P2 is identified for each subtree in P1. A change would then have occurred if the 

similarity coefficients of the most similar subtrees are different than 1. 

In the following, each step is described in more details in a separate subsection. 

3.3.1 Web page cleaning 

Web page cleaning is implemented using HTML Tidy [12], which has many features, 

including detecting and correcting missing or mismatched end tags plus correcting end tags that 

are out of order. At the end of this phase, the processed HTML file is saved as an XML structure. 

It should be noted that although the output of Tidy is an XML structure, the markup remains 

HTML, and thus the same issues that were discussed in Section 2 still hold. 

3.3.2 Page hashing and subtree generation 

To improve performance of the detection process, the nodes of the entire web page to be 

compared are hashed into a table. This table is extensively used during the )( 2NO subtrees 

comparison process in which the nodes of each subtree in the updated page are compared to 

nodes  in all the subtrees of the reference page that have similar marks. The hash table for the 

reference web page is saved on disk after its creation along with the subtree table that is 



 12 

described below. It is later read into memory when a new version of the web page is downloaded 

for the purpose of detecting changes relative to the reference page. The hash table is created by 

reading into a tree-like list (using the Java NodeList class) the XML file obtained by XSL 

transformation. The hash table is populated by fetching nodes from the list and examining them 

for the following attributes that become data members of the hash table: node_id, node 

(node’s HTML tag name), type (path from root to the node), att_name, att_value, and 

weight (defined above). The node_id is the key that maps to a position in the hash table 

using one to one mapping. Table 1 presents an example of a part of a hash table. 

row node_id node type att_name att_value weight 

24 25 Div html;body;div; Id logo NULL 

25 26 A html;body;div;a; accesskey 1 NULL 

26 27 Img html;body;div;a;img; Alt NULL NULL 

27 28 Div html;body;div; Id Date Jan 1, 2006 

Table 1. A part of an example hash table 

The generation of the subtrees was done while hashing the page by checking the depth of 

each node: if it is 3 then a new subtree begins with the current node being its starting node, and 

the preceding node being the last node of the previous subtree (the last node of the page is the 

last node of the last subtree). Simultaneously, each subtree is given its corresponding mark, 

which is the mark of the first node of the subtree (level 3). The generated subtrees along with 

their marks are stored in a specifically designed table that comprises the columns Mark, 

Start_id, and End_id. As an example, node 25 in Table 1 (div node) has level 3 and 

encloses a subtree of all elements beneath it until the next node with level 3 is encountered, 

which happens to be node 71 (p node, as shown in Table 2).  

Mark Start_id End_id 

Div 25 70 

P 71 71 

div 72 120 
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div 121 186 

P 187 187 

P 188 223 

P 224 224 

Table 2. Example of a subtree table 

3.3.3 Subtree Comparison and Mapping 

To further improve performance, a look up table (LUT), which contains references to the 

subtrees of the second page, was employed. It is made of an array of lists (illustrated in the 

example below of Figure 4), whereby each array slot corresponds to a mark (p, img, div, a, 

ol, ul, …), while each list contains references to the subtrees in the second page having the 

same mark. Actually, these references are row positions in the subtree table. For instance and as 

shown in Figure 4, the div tag corresponds to rows 0, 2, and 3 in Table 2. This arrangement 

minimizes comparison time, since searching for the subtrees of a specific mark can be done in 

O(1) instead of O(n) sequential search through the whole subtree table. 

 

Figure 4. Look up Table (LUT) example 

To store comparison results for use later in the node mapping operation, a temporary table is 

created that includes seven columns (node_id1, node_id2, attribute, type, 

weight_position, weight_total, and CS). The columns weight_position and 

weight_total correspond respectively to the numerator and denominator used in (1) to 

figure out the content similarity between two subtrees, while attribute corresponds to the 
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attdist computed in (2), and type is typedist calculated in (3) . The algorithm iterates over the 

subtree table of the first (reference) page, and compares the current subtree with all the subtrees 

having the same mark in the second page (with the aid of the LUT of the second page). Actually, 

this involves comparing the nodes in the current subtree with those in the subtrees with the same 

mark, by making use of the hash table to directly access the data associated with the desired 

nodes. It should be noted that memory is allocated only for comparing one subtree, which 

involves computing the number of rows in the temporary table, as follows. Having the mark of 

the subtree of the first page, the LUT gives the references to all the matching rows in the subtree 

table (i.e., pointers to the subtrees of the same mark in the second page). For each one of those 

subtrees, the number of nodes is calculated (end2-start2+1: retrieved from the subtree table) and 

next multiplied by the number of nodes in the considered subtree of the first page. The sum of all 

the multiplications (i.e., for all matching subtrees of the second page) is then the total number of 

rows for which memory is allocated.  

Node mapping is then applied to find the most similar subtree from the second page to the 

considered subtree of the first page. This continues for the consequent subtrees, where memory is 

reclaimed and then allocated. 

3.3.4 Subtree similarity Computations 

To describe the computations, we first define variables that represent elements of the subtree: 

 m denotes the set of element types (marks) that are detected in all subtrees. For HTML, 

usually this set mostly includes <TABLE>, <IMG>, <LIST>, <A>, and <P>. We consider 

that m consists of K possible elements (i.e., tags that are found in T). Moreover, we define mi 

as the set of subtree marks that denotes the group of element (HTML tag) types contained in 

subtree TBiB (i.e., mi   m)B. For example, if subtree TBiB contains an image and an unordered list, 
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then mi ={UL, IMG}. Also, 
ki

m  mi denotes a mark found in subtree TBi, with k{1, 2, …, 

K} being the kth index in the set m. 

 If { 1r , 2r , …, ir } is the path from the root node 1r  to the node ir  then, type( ir ) is the 

concatenation of corresponding HTML elements starting from the root of the tree and ending 

at ir . Here, a node refers to an open tag plus its corresponding closed tag. 

 1

, kmpir is the pth element of subtree 1

iT  having mark km m, and 
2

, kmqj
r  is the qth element of 

subtree 2

jT  having the same mark km . 

 w( ir ) is the set of words in the text associated with the leaves of subtree rooted at node ir . In 

w(
1

, kmir ), the superscript denotes the page index (1 for stored page and 2 for new page), while 

mk denotes a subtree mark corresponding to the kth HTML tag in the set of possible tags.  

 a( ir ) is the set of attributes associated with ir . Hence, in a(
1

, kmir ), the superscript and 

subscripts have the same meanings as those in w. 

The word content similarity between two nodes is expressed using the definition of the 

function Intersect, which returns the percentage of words appearing in both w(
1

, kmir ) and w(
2

, kmjr ): 

Intersect(w(
1

, kmir ), w(
2

, kmjr )) =
|)()(|

|)()(|

2

,

1

,

2

,

1

,

kmjkmi
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 (1) 

For computing the similarity between node attributes, the function Attdist is used: 

Attdist(a(
1

, kmir ), a(
2

, kmjr )) =
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The above function gives a measure of the relative weight of the attributes that have the same 

value in 
1

, kmir  and 
2

, kmjr  with respect to all their attributes. As indicated in Equation 2, specifically 
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the function Weight(al), the attributes are weighted differently according to their relevance of 

use. For example, HREF is considered more relevant than the formatting attribute rules. 

Attribute weights vary between 0, least important, and 100, most important. Some of the 

attributes weights were assigned according to their frequency of use, as specified in [30], and 

stored in an XML file, which is read by the application when it is first started (independent of the 

web comparison process) into a look up table that holds the attributes as "strings" in one column 

and weights as "integers" in the other column.   

To compute the similarity between the paths from the root nodes of T1 and T2 to the 

considered nodes 
1

, kmir  and 
2

, kmjr respectively, the function “Typedist” is used: 

Typedist(type(
1

, kmir ), type(
2

, kmjr )) =
)2(

)2(
max

0

max

0

i

i

isuf

i










 (3) 

where suf and max represent, respectively, the length of the common suffix (number of common 

nodes from root to the two concerned nodes, i.e., number of common HTML tags) and the 

maximum cardinality (number of HTML tags of the longest path) between type(
1

, kmir ) and 

type(
2

, kmjr ). 

Now, having the characteristics for the two nodes 
1

, kmir  and 
2

, kmjr , the similarity between 

them, given they have the same subtree mark mk, is computed as follows:  

CS(
1

, kmir ,
2

, kmjr ) = -1+2×(α×Typedist(type(
1

, kmir ), type(
2

, kmjr ))+ 

β×Attdist(a(
1

, kmir ),a(
2

, kmjr ))+γ×Intersect(w(
1

, kmir ),w(
2

, kmjr ))) 
(4) 

where α, β, and γ are weights such that α + β + γ = 1. Moreover, the values of α, β and γ are 

selected on the basis of emphasizing certain types of changes and for normalizing the output 

result of CS. It is obvious from (4) that the returned similarity varies between (-1, 1], where -1 

corresponds to maximum difference and 1 to maximum similarity. 



 17 

3.3.5 Determining Subtree similarities 

After computing the node CS values, the next step is to calculate similarity coefficients 

between subtrees. Given two subtrees 1

iT  and 2

jT  belonging to trees T1 and T2, a mapping 

M( 1

iT , 2

jT ) from 1

iT  to 2

jT  with 1

iS  and 2

jS  as their respective sets of nodes, and 1

, kmpir  and 

2

, kmqj
r being respectively the pth and qth nodes belonging to 1

iT  and 2

jT and having the same 

mark mk, the Subtree Source Node Similarity is given by: 

),( 21
jiM

Sim
TT

( 1

, kmpir ) = )),(( 2

,

1

, kmqjkmpi rrCSmax   2

, kmqj
r  2

jT  (5) 

That is, for each node in subtree 1

iT the above finds the most similar node in 2

jT .  

Next, the similarity of two subtrees 1

iT  and 2

jT  having nodes of the same mark, 
1

, kmir 
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, kmjr 
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The above states that the similarity of each pair of subtrees belonging to T1 and T2 is the average 

similarity taken across all nodes of 1

iT (Pi is the number of nodes in 1

iT ). 

Finally, the Document Subtree Similarity is the maximal subtree similarity between 1

iT  and 


2

jT  T2, as defined in (7) below. The value of Sim( 1

iT , 2

jT ) indicates whether a change took 

place inside the subtree or not: a value of 1 implies no change has occurred in this subtree, while 

a value less than 1, means a change has taken place. Usually, one is not directly interested in the 

node where the change took place, but rather in the subtree where the changed node resides. 

Sim( 1

iT , 2

jT ) = max (SimM( 1

iT , 2

jT ))  2

jT  T2 (7) 
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4. Performance Results 

To produce relative performance results, both the enhanced and original approach were 

implemented. Tests were performed on a 1.8 GHz Pentium M NEC laptop, model i-Select 

M5410, running Windows XP SP2, with 1 GB RAM, and 1MB cache. For implementation, Java 

was used to program the functionality of both approaches, Tidy [12] for cleaning HTML web 

pages and tags, and Oracle Parser for parsing and building the XML trees. 

4.1 Results Validation 

Before proceeding with illustrating the performance results, we describe a procedure we used 

to validate the results. We focused on a highly dynamic page (home page of CNN.com) and 

downloaded from the way-back machine a total of 520 pages covering the whole year of 2006, 

and therefore had an average of one to two pages per day. For this experiment, we conducted 

three trials, each of which involved choosing four pages randomly from the pool of 520 pages 

and comparing the next 20 pages that follow each one of those four pages to it using a balanced 

configuration (4,3,3). The obtained results showed major differences in the similarity coefficients 

at the start, but became nearly constant at the end. The results are presented in Figure 5, where 

the y-axis represents the fraction of the page that has been changed, which was computed by 

differentiating the similarity coefficients (note that it uses a log-scale). The graph reveals a linear 

trend, which indicates an exponential decay and corresponds to a Poisson distribution that 

resembles the output reported in [6]. In this regard, it should be mentioned that the web change 

frequency has been studied in the literature and modeled as a Poisson distribution [21] [2] [6]. 

The reason for choosing 20 pages for this experiment is because they correspond to 10 days 

of monitoring, after which the web page contains content that is mostly new, as evidenced by the 

fact that the similarity coefficients tended to an asymptote toward the end of the comparison.  
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Figure 5. Web page change fraction versus time 

The resemblance that exists between the results shown in Figure 5 and those reported in [6] 

(which is in turn referenced in many other works) may be used to make inferences about the 

reliability of the output that our approach produces. 

4.2 Presentation of Results 

For the performance tests, over 250 web pages were downloaded from the Internet in order to 

run tests for assessing the relative performance of the proposed approach. Table 3 illustrates the 

types of these pages along with statistics that describe their content and size. From this 

collection, 26 representative Web pages were chosen. 

Type 
# of 

pages 

Content range (number of items) Size range 

(# of nodes) Links Figures Tables Lists Text Scripts 

News sites 56 15 - 40 15 - 40 5 - 10 5 - 10 60 - 1000 15 - 40 60 – 950 

Personal sites 12 5 - 10 3 - 5 5 – 10 15 - 40 60 – 1000 0 - 3 10 – 670 

Academic sites 42 10 - 15 5 - 10 15 - 40 15 - 40 40 – 60 2 - 15 30 – 440 

Commercial sites 104 10 - 15 5 - 10 15 - 40 15 - 40 40 – 60 10 - 15 20 - 1060 

Online documentation 20 10 - 15 15 - 40 15 - 40 10 - 15 60 - 1000 0 - 10 240 - 2920 

Wikipedia sites 20 > 600 10 – 50 10 - 30 40 - 200 50 - 300 5 - 15 1630 - 3010 

Table 3 Types and distribution of Web pages that were used in the study 

 

The experiments focused on the performance of the approach in terms of the number of node 

similarity computations and the time consumed to completely produce and store the similarity 
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coefficients. For every Web page tested, we noted the number of node comparisons for both the 

enhanced and original algorithms. Figure 6 shows the number of saved similarity computations 

plotted on a logarithmic scale to illustrate the improvements for small and large Web pages. One 

can notice the savings depicted as percentages as well, which translate to appreciable time 

savings, especially for large web pages. The data in the figure reveals that our approach is faster 

by at least 30% for pages having more than 500 nodes, while for less than 500 nodes, we still 

observe savings that can add up to significant times when many pages are processed. 
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Figure 6. Saved node similarity computations 

Figure 7 shows the average change detection time measured after running the enhanced 

algorithm 10 times on each pair (modified and original) of the 26 Web pages. This time includes 

reading the updated web page, building the hash and subtree tables, doing the comparisons and 

computing the similarity coefficients, and inferring the updated subtree mapping. The results in 

Figure 7 illustrate that pages with less than 500 nodes (40KB on average) can be processed and 

compared in less than 2 seconds while those that have about 1000 nodes can be compared in 

about 8 seconds. The figure also shows that the detection process is mostly consumed by subtree 
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node comparisons. In fact, the total time it takes to clean and parse the HTML document into an 

XML file, plus building the hash table and identifying the subtrees along with building the 

subtree table, is close to one tenth of the time consumed by comparing the nodes and computing 

the similarity coefficients. This demonstrates the key role of the hashing mechanisms that was 

integrated for providing direct in-memory access to node information during the comparisons. 

Related to processing time, the work in [17] describes an analysis of over 21,000 web pages 

that were surveyed using three methods of seed generation via search engines. The first was the 

Yahoo random page CGI, which redirects to a random URL, the second used the Open Directory 

Project (ODP) database [23] to randomly select seed documents, while the third utilized two 

random English words as a query to the Google search engine and then used the top ten 

documents as seeds for the crawl. The average size of HTML web page was found to be 281 tags 

(nodes). For pages of this size, our proposed HTML web change detection approach can 

complete the detection process in less than one second (0.87 second on average).  

0

1

10

100

0 500 1000 1500 2000 2500 3000

Number of HTML nodes

C
h

a
n

g
e
 d

e
te

c
ti

o
n

 t
im

e
 (

s
e
c
.)

Processing 2nd Page

Comparison + Mapping

Total

 
Figure 7. Change detection times for original and enhanced approaches 
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Next, the detection level is studied by applying different values of , , and  while 

processing the web pages used for testing. For this, different versions of those pages were 

downloaded from the way back machine, and then each parameter, e.g., , was varied between 0 

and 1 in increments of 0.2, while each of the other two parameters, e.g.,  and , was set to half 

of the remainder, e.g.,  = = (1-)/2. For each combination of , , and , the different versions 

of each web page were processed, and the measured similarity coefficients for each page when 

compared to the previous version were stored on disk, as was mentioned earlier. Each 

coefficient’s value that is not equal to one was considered a change. Figure 8 plots the detection 

reliability, which we define as the ratio of the number of detected changes to that of the actual 

ones. The figure illustrates the computed reliability when considering each type separately (i.e., 

content, attribute, or style), and when considering the overall changes across all types. The 

former case was meant to study the effect of the , , and  emphasis parameters on the changes 

they relate to (i.e., style, attribute, and content, respectively). The “Overall” curve corresponds to 

the weighted average, which is why it drops dramatically when any of the parameters’ values is 

one (implying that the other two parameters were set to zero), or is zero (in which case the values 

of the other two parameters sum up to one). For example, the left-most part of the graph 

illustrates the case where one of the parameters (, , or ) is set to zero, whereas each of the 

other two is set to 0.5. In this situation, the system is able to detect changes associated with the 

two non-zero valued parameters, thus giving a detection reliability close to two thirds. The right-

most part, on the other hand, depicts the case where two of the parameters are set to zero, 

whereas the remaining one is set to 1. Here, the system is able to detect changes associated with 

the one non-zero valued parameter, thus giving a detection reliability very close to one third. 
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Figure 8. Detection level relative to maximum number of detections 

Several remarks can be made about the graph in Figure 8. The update detection is generally 

independent from the emphasis parameters when their values are not equal or close to zero. This 

comes from the fact that in our implementation there is no differentiation on the basis of how 

significant the change is. That is, if the subtree similarity coefficient value is different than 1, 

even by a small amount, a change is declared. A value near zero for one of the three parameters 

will eliminate the corresponding coefficient’s participation in the overall similarity calculation 

and will therefore weaken the detection of a change if it is of the corresponding type. The above 

suggests that the parameters , , and  can take on Boolean values without affecting the 

functionality of the system. However, the coefficient of similarity (CS) expression in Equation 4 

requires numeric values for these parameters and that their sum is equal to 1. Obviously, these 

parameters could be of more use if changes are to be classified according to their severity, in 

which case the estimated severity of the change could be directly related to the distance of the 

similarity coefficient from 1. Then one can visualize the magnitude of the changes right on the 

updated page using, for example, color coding or some other mechanism. 

4.3 RSS Feeds Change Detection 



 24 

The proposed change detection algorithm has also been applied to RSS feeds that may be 

present in certain web pages. RSS (Really Simple Syndication) is a format for delivering 

regularly changing web content, such as news. The most common standard for this format is RSS 

2.0, which is used by more than 80% of the web sites [26] that publish dynamic content, 

including Microsoft, CNN, Google News, Yahoo News, and AFP. RSS content is defined in an 

XML file, consisting  of one channel per feed that includes many items which represent stories 

or events, and each item comprises attributes that include title, description, publication date, and 

so on [25]. Many websites, however, ignore other attributes that are optional, although important 

(like the guid), and only supply title and description. As a consequence, we only rely 

on the latter two attributes when applying the detection algorithm, which makes the mapping 

process between feeds reliable, yet more complex. 

To include RSS feeds in the comparison process of two web pages, we need to define criteria 

for detecting changes.  In [1], two criteria to monitor news are defined, and since RSS mainly 

represent news and events, we will adopt the same criteria (termed event detection and event 

tracking) and apply our algorithm so that each RSS feed becomes a subtree represented by an 

RSS tag (e.g., RSS news or RSS sports) so as to avoid comparing non-compatible RSS feeds to 

each other.  Each RSS tag encompasses a subtree consisting of the items mentioned above.  The 

description of the item is analogous to the weight definition mentioned before while the title is 

analogous to the attribute. We note that type, which represents the Path from the root element, 

has no relevance in comparing RSS feeds. Finally and similar to alpha and beta, we empirically 

assigned 30% of the comparison weight to the title and 70% to the description. 

Now concerning the detection process, when an RSS tag is encountered when a page is being 

retrieved, the XML file is processed and then hashed in a manner similar to the web page.  All 
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items are then compared to each other using the similarity functions employed for the main page 

(i.e., (1) and (2)), and the similarity coefficients are stored in a special array. Then a mapping is 

applied to define the nearest item in the second file to each item in the first file, which is done by 

finding the item of the next page which corresponds to the highest similarity coefficient. 

To classify the type of change, the similarity coefficient of the mapping between two items 

will be used as indication that the item was modified if it is positive (less than 1), and that the 

item of the first page was removed if the coefficient is negative. As for added items, every 

mapped item of the second page is traversed to see if it is not mapped to any item in the first 

page (does not exist), or if it is only mapped to item(s) in the first page with negative similarity 

coefficient(s). In such cases, it will be concluded that the item was added.  

Table 4 illustrates an example of a comparison between two RSS feeds retrieved from 

yahoo.com on Sep 3, 2007 at 11:30 GMT and then at 15:46 GMT. From the perspective of the 

first page (P1), we observe that items 8, 13, 15, 16, and 18 were not modified, items 1, 2, 3, 14, 

and 20 were modified, while items 4, 5, 6, 7, 9, 10, 11, 12, 17, and 19 were removed. Now, from 

the perspective of the updated page (P2), we deduce that items 1, 5, 7, 9, 10, 11, 18, and 19 were 

added. We should stress while examining the coefficient values that Table 4 only shows the titles 

that only make up 30% of the weight, and does not reveal the descriptions that account for 70%. 
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Table 4. An example of mappings between news feeds (based on title and description) 

6. Discussion and Conclusion 

This paper described an improved Web change detection approach based on restricting the 

similarity computations to subtree nodes having the same HTML tag, and hashing the web page 

for direct in-memory access to node information. A practical server application was developed to 

allow for scheduling web page monitoring jobs and producing reports and graphs against stored 

similarity data that describe processed comparisons between a page and its previous version(s). 

Performance measurements using a group of web pages selected from a pool of over 200 pages 

showed that the enhanced algorithm can perform change detection in the order of seconds for 

small and medium-sized web pages, and in the order of few tens of seconds for large web pages. 

Item 

P1 

Item 

P2 

Similarity 

Coefficient 
Item Title 1 Item Title 2 

1 2 0.227523 Felix becomes Category 5 hurricane  Felix becomes Category 5 hurricane 

2 3 0.143421 Power outage from California heat wave  Calif. heat leaves 14,000 without power 

3 4 0.52088 Britain pulls out from Basra base  Britain pulls out of downtown Basra base 

4 10 -0.11353 Lines at United States borders longer  Bush makes war assessment in Iraq 

5 5 -0.61324 Girl, 13, found dead in Ariz. mine shaft  Iranian-American scholar leaves Iran  

6 6 -0.47722 Lebanese army hunts for fugitives  Rocket lands by Israeli day care center  

7 12 -0.53326 Scientists test new bipolar remedies  Women may need different heart treatment  

8 8 1 Report: U.S. workers are most productive  Report: U.S. workers are most productive  

9 5 -0.6372 Movie studios bask in blockbuster summer  Director says Owen Wilson's doing better  

10 10 -0.49718 Serena, Henin to square off at U.S. Open  Federer, Roddick highlight Open today  

11 4 -0.46826 British troops quit Iraqi city of Basra Bush holds “war council” with top aides in Iraq  

12 12 -0.08292 Felix becomes rare top-ranked storm  Hurricane Felix threatens Central America  

13 13 1 
N.Korea says U.S. to remove it from terrorism 

list  

N.Korea says U.S. to remove it from terrorism 

list  

14 14 0.785882 APEC set for world trade, climate change talks  APEC set for world trade, climate change talks  

15 15 1 
Afghan Taliban vow to kidnap, kill more 
foreigners  

Afghan Taliban vow to kidnap, kill more 
foreigners  

16 16 1 Russian strategic bombers run Arctic exercise  Russian strategic bombers run Arctic exercise  

17 15 -0.58235 China vows to clean up toxins amid food scares  
Edwards gets fresh union backing for White 

House bid 

18 17 1 
Study finds smokers have higher risk of 

dementia  

Study finds smokers have higher risk of 

dementia 

19 5 -0.60234 Former Bangladesh PM Zia arrested  UN chief in Sudan to push for Darfur peace  

20 20 0.43125 
Maximum strength Hurricane Felix aims for 
Central America  

Maximum strength Hurricane Felix aims for 
Central America  
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Concerning the limitation that was mentioned in Subsection 3.1, there are three situations in 

which changes using our approach will not be detected: 

1. A new tag is added directly below the <BODY> tag (at level 3) in the new page, given 

that there is no tag of the same type at the same level in the old page. 

2. A tag at level 3 in the new page is changed to a tag of type k, given that there is no tag of 

type k at level 3 in the old page. 

3. A tag of type j at level 3 in the new page is deleted, given that it is the only tag of that 

type at that level in the old page, and that no other tag of type j now exists in the new 

page at level 3.  

Other than the above situations, the algorithm will always detect the changes. The important 

question, however, is how probable are the above situations? To answer this question, we refer to 

the study that was reported in [9], which analyzed the changes made to web pages by crawling 

over 150 million HTML pages once a week, over a span of 11 weeks. Of concern to our work are 

the types of changes made to the HTML markup. Out of the almost 1.5 million changes  in the 

markup that were detected (1% of the total sample size), 61% were for attribute changes, 32% 

for adding or deleting attributes, and 6% for adding or deleting tags. The tags that were affected 

(out of the 6%) were the <A> tag (48%), <IMG> tag (10%), comments (23%), and the rest were 

distributed among non-popular tags (<META>, <PARAM>, <INPUT>, etc.). The study did not 

provide information concerning the position of the changed tags within the web pages, but 

according to our relatively small set of web pages that we used for performance testing, we 

noticed that the probability of the <A> tag falling directly below the <BODY> tag is less than 5% 

while that of the <IMG> tag is less than 15%. From the above data, it is very easy to see that the 

probability of the three situations occurring in practice is very low (about 38 in one million). 
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For future works, the algorithm can be parallelized through multithreading, which can 

increase performance significantly. In particular, since each subtree of the original page (left 

subtree) is compared to all similar subtrees of the updated page (right subtrees), one thread could 

compare one or more left subtrees to all right subtrees and identify the most right similar subtree. 

Given that the comparisons (for computing the similarity coefficients) are by far the most time-

consuming tasks of the algorithm, multithreading could potentially divide the running time of the 

algorithm by M, where M is the number of threads. Another suggested future work involves the 

application of this algorithm to the Deep (Hidden) Web, mostly concerning dynamic web pages 

that are generated in response to submitted queries. Moreover, and since in this work we have 

applied our algorithm to RSS feed changes, it should also be straightforward to handle online 

blogs in a similar fashion knowing they are defined in XML files just like RSS contents are. 
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