This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

A proxy-based architecture for dynamic discovery and invocation of Web

Services from mobile devices

Hassan Artail, Kassem Fawaz, and Ali Ghandour
American University of Beirut
Department of Electrical and Computer Engineering
P.O.Box: 11-0236, Riad El-Solh Beirut 1107 2020, Lebanon
E-mails: {hartail, kmf04, ajg04} @aub.edu.lb

Abstract

Mobile devices are becoming more pervasive, and it is becoming increasingly necessary
to integrate Web services into applications that run on these devices. We introduce a novel
approach for dynamically invoking Web service methods from mobile devices with minimal
user intervention that only involves entering a search phrase and values for the method
parameters. The architecture overcomes technical challenges that involve consuming
discovered services dynamically by introducing a man-in-the-middle (MIM) server that
provides a Web service whose responsibility is to discover needed services and build the
client-side proxies at runtime. The architecture moves to the MIM server energy-consuming
tasks that would otherwise run on the mobile device. Such tasks involve communication with
servers over the Internet, and XML-parsing of files and on-the-fly compilation of source
code. We perform an extensive evaluation of the system performance that includes scalability
measurements as it relates to the capacity of the MIM server in handling mobile client
requests, and device battery power savings resulting from delegating the service discovery

tasks to the MIM server.

Keywords: Web service discovery, dynamic invocation, mobile devices, mobile computing

Digital Object Indentifier 10.1109/TSC.2010.49 1939-1374/10/$26.00 © 2010 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

1. INTRODUCTION

Recent trends in mobile computing and the popularity of mobile devices has motivated
interest in accessing Web services from mobile devices in order to extend their functionality
and gain access to remote data. However, the particularities and limitations of mobile devices
and the mobile environment pose great challenges for consuming Web services [39]. To
begin with, when using UDDI registries for service discovery, multiple costly network round
trips are needed, and frequent unavailability of the wireless network may cause failures in the
service discovery process [39], and will hinder the completion of the user request [34].
Additionally, there are several issues and challenges that emerge from the fact that mobile
devices have lower processing power, limited bandwidth, less memory, and finite battery
power when compared to desktops [34]. All the above suggest that architectures which target
mobile devices should aim to minimize their interactions with the network and reduce their
resource-consuming processing whenever possible. Actually, the mentioned issues and
challenges led to the architectural configuration proposed in this paper which introduces a
server “in the middle” whose role is the provisioning of services in a way that is adapted to
the capabilities and the constraints of mobile devices. Most of the workload involved in the
dynamic discovery of Web services is passed to the server, thus relieving the mobile device
of the time- and processor-consuming tasks, mainly related to parsing of WSDL files [33].

To access a Web service dynamically, a solution is for its WSDL file to be parsed by the
mobile device application that will interact with the service directly; or another solution is to
build a compiled assembly from the WSDL file at runtime and use it as a proxy by the mobile
application to interact with the service. Given the argument we made earlier for a server-
based solution to interface mobile devices with Internet-based Web services, it makes little
sense to do the parsing of the WSDL files on the device. On the other hand, by building the

proxy on the server when needed and sending it to the mobile device, the latter will be able to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

interface with the Web service as though it were a local process. Another reason, although
technical, why the proxy should be generated by the server is that language compilers are not
meant to run on mobile devices, and no commercial compilers have been developed to date
for such devices. Later in the paper we compare these two approaches from different aspects,
and prove the advantageous features of the second approach, which we have adopted.
Moreover, since mobile devices depend primarily on their battery power to communicate and
run applications, power conservation becomes critical if the device needs to communicate
over the Internet and serve user requests that involve discovering services and invoking their
methods. For this reason, we conduct experiments which illustrate the battery energy savings
that are attributed to the implemented design. In summary, this paper describes an effective
architecture which allows mobile users to acquire needed data through dynamic invocation of
Web service methods by merely providing search phrases and method argument values into a
dynamically generated GUI Our design is based on the framework defined in [11] for
realizing dynamic service invocation, and stresses practical aspects as perceived by the user
in terms of interface simplicity and effectiveness in returning desired results.

There are two different techniques for accessing Web services: using SOAP and the
REST approach. SOAP defines the XML-based information which can be used for
exchanging structured and typed information in a decentralized distributed environment
between peers, including Web services and UDDI registries that represent service brokers
through which providers advertise their services. The process of Web service invocation
starts when the client-side proxy wraps the user’s request (method call) into a SOAP message
and sends it to the service, which extracts the call from the received message, executes the
call to produce the results, wraps the results into a SOAP message, and sends it to the client.
Upon receiving the message, the same proxy extracts the results and hands them over to the

calling client application. Before an application can begin communicating with a service, it

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

must first discover it and get its specifics (supported methods and invocation details), and
then generate its proxy. The proxy allows a client application to make method calls as though
it were calling a local function. The proxy is created by first generating a source file from the
service’s WSDL (Web Service Description Language) file, which describes the Web service,
how to access it, the operations it performs, the types of parameters to be passed to each of
the supported methods, and the types of returned results. After the source file is generated, it
is compiled into a proxy class that is finally registered with the client application.

REST, on the other hand, stands for Representational State Transfer [9] and is an
architecture style, according to which a Web service makes available a URI that returns an
XML document (representation of the resource) which can include links to other documents.
This allows the user to drill down to get more detailed or other related information. It should
be noted that the URIs are logical, not physical, and could correspond to conceptual entities
(not static documents). To send data to the server, the service also provides a URI that allows
the user to create an instance document which conforms to a schema publicized in an XML
document, thus allowing him to submit the input document as the payload of an HTTP POST.

The process of accessing a Web service is illustrated in Figure 1 for both approaches,
where in the case of REST, the shown “Connector” encapsulates the activities of accessing
resources and transferring representations (states of resources) [12].

2. RELATED WORK

Several approaches have been proposed for enabling dynamic invocation of Web service
methods from mobile devices. However, these methods either proposed conceptual solutions,
or suggested architectures that include components for assisting mobile devices in accessing
Web services. Our proposed solution is of the second type, but differs from the proposed
schemes in that it is complete, fully dynamic, employs generic technologies, and is not

restricted to a particular platform. Indeed, the survey that follows shows how the proposed

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

solutions in the literature either only allow non-dynamic access to deployed Web services

from mobile devices, or provide dynamic access to services, but not from mobile devices.

Client N Mzgsgze
Device Wireless < Soq
55 °
S &

Access

) Point <&° %S/ . Web 2SerV|ce
| | 1 Deserialize
Serialize || SOAP SOAP <()>
request Request / | Message Process
request
- X ° 3
deserialize| / SOAP SOAP
= response | \Response Message
: __ X

Web Server

#*Dynamic
resources

Fixed

2 Fixe.resource

. C—~
resource fixed
resource

Origin Server
Figure 1. Using SOAP (top) and REST (bottom)

Wireless resource
Access

Point

Connector

Representation
of resource

Representation
of resource

Starting with the first class of solutions mentioned above, an application for Peer-to-Peer
(P2P) Web services is suggested in [14] for use in ad-hoc networks. A distinction between
two different P2P realizations is made: one in which a stand-alone node acts as a broker and
another one where no centralized service-broker is available. In the second scenario, some
nodes within the environment must provide the broker service. The paper presents a Java-2
Micro Edition (J2ME) implementation that was used to analyze the memory usage and
response time of the SOAP server. In [7], a system was presented to study the resource
consumption and performance of providing Web services on mobile phones. The analysis of
a prototype which was developed using Personal Java on a Sony-Ericsson P800 phone shows
that the implementation is able to handle up to eight concurrent users with reasonable time
delays. Finally, two architectures were proposed in [29] for accessing Web services from

mobiles. They use the 2ME Web Services API (WSA) and Short Messaging Service (SMS)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

to target high- and low-end mobile devices, respectively. WSA integrates basic support for
Web services invocation and XML parsing into the runtime environment of the mobile
device. A network application that resides on a WSA-enabled device must include a stub,
which is generated by a tool on a development workstation, and then deployed to the device.
The application can then employ the stub and the runtime to parse XML SOAP messages
using JAXP, and consume the service using JAX-RPC. To access Web services using SMS,
an SMS gateway that translates short messages to HTTP requests was used to connect the
SMS Center to an application server, which in turn translates HTTP requests/responses
to/from SOAP messages. Every time a Web service needs to be accessed, programming and
configuration is required in order to create a stub or to set up communication using SMS.

In another type of approaches, servers in the middle were employed to make accessing
Web services faster or to host Web services on mobile devices. In [24] it was argued that the
normal Web service architecture which integrates a requestor, a broker, and a provider does
not allow for designing a suitable service invocation on mobile devices. A service gateway is
suggested to be included between the requestor and the rest of the architecture. It was
recognized that such a solution requires additional code on both the mobile phone and the
service side. Simulation results showed that a mobile phone accessing a Web service via the
service gateway is faster than using the KSOAP protocol. On the other hand, [18] describes a
platform for hosting Web services on mobile devices by building on the Jini Surrogate
Architecture Specification [31]. In this platform a service that is hosted on a mobile device
has a surrogate that runs on a server connected to a fixed network. With this arrangement,
clients in the wireless and fixed networks communicate with the mobile service through the
surrogate, whereas communication between mobile services and their respective surrogates
takes place over HTTP. The paper briefly discusses three application scenarios but it does not

present any performance results nor does it mention the limitations of the architecture.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

For dynamic invocation of Web service methods, few platform-specific technologies
were developed. The DynWsLib library [32] is a .NET Framework-based technology that
works by generating the client-side proxy class at runtime. However, according to one
developers’ forum, this library worked consistently with services running on the local server,
but not always when trying to reference remote services. Moreover, this library, which is no
longer supported, does not provide an effective mechanism to handle specific types during
the proxy generation process. The ProxyFactory project [8], which builds on DynWsLib,
tries to address this issue, and more generally, tries to take advantage of the unification of
communications technologies provided by.NET. However, ProxyFactory cannot run on the
Compact Framework (lightweight version of .NET that targets “smart” devices) because the
class that is needed for serialization is not available in this framework.

Finally, we discuss the work in [30] which proposes a design for automatic generation of
multimodal user interface from discovered WSDL files and a mechanism for service
invocation. The approach relies heavily on the XForms technology [36] and requires the
client browser to understand another markup language. Although the architecture provides a
transparent invocation mechanism based on runtime binding of Web services, the provider is
required to publish the WSDL files for the available Web services to a local server, which
acts as a WSDL files repository. Upon receiving a new WSDL file, the local server generates
corresponding multimodal abstract user interface components based on XForms and adds
them to a service list. This work, however, does not address the issue of automatic proxy
generation, nor does it offer a proof of concept or any experimental results.

3. PROPOSED SYSTEM DESCRIPTION

Our design is based on SOAP, but we describe later how it can work with REST. The

architecture incorporates a man-in-the-middle (MIM) server which will be used by mobile

devices to discover needed Web services and build their proxies. After getting the proxy, a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

mobile device can invoke a particular method of the Web service and get the desired results.
More specifically, the MIM server offers a Web service which exposes a Web method that
the mobile device invokes and passes to it a search string. The MIM server’s special service
(or simply the MIM server) compares the submitted string to cached short-descriptions of
Internet Web services and generates a short list of services that best-match the user’s string.
Next, the MIM server downloads the WSDL files of the short-listed services, and uses the
included descriptions of the supported methods to identify the most appropriate service (i.e.,
the one whose method’s description matched the user’s query the most). After this step, the
MIM server generates a source code file from the WSDL file of the chosen service and then
compiles it using libraries that target the mobile device platform to generate the client-side
proxy and ship it to the mobile device. At this point, the call that was originally made by the
mobile device application to the MIM server’s Web method returns with information about
the Internet Web service. This includes: name of service and its chosen method, number and
types of input method parameters, and number and types of returned results. With such
information, the mobile application generates a dynamic GUI for the user to supply values for
the Web method parameters, and then another GUI to display the results. The cached short
descriptions mentioned above are downloaded by an independent process on the MIM server
which periodically queries UDDI servers. The above operations are summarized in Figure 2.

(2), (5) Descriptions of available Web services (ii)
) @,&Ch/}zg
Man-in-the \ WSDL URLs (3)

middle
Server

O

Text

Generate
source
file (6)

i

Mobile proxy
Device

@ _| I

(Local Area Network

0

\ Query Phrase (1)

Figure 2. Overview of operations in the proposed system

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

The general architecture of the proposed system is shown in Figure 3, where it is evident
that almost all the client processing has been moved to the MIM server. To start with, the
MIM server has a process that wakes up periodically to download a list of Web service
descriptions and associated URIs from a designated set of UDDI registries. More notably, the
MIM server offers a Web service that interfaces to three main processes which jointly fulfil
the user’s request. The first of these is the Text Matching Process which serves two purposes:
first, to generate a short list of candidate Web services based on matching their cached short
descriptions with the user’s supplied search string, and second, to identify the most
appropriate Web service among those short-listed based on matching the methods’

description found in their downloaded WSDL files with the user’s string.

Mobile Search
» Application string
2
-
e
9 K T O = 12}
g % 2 § ‘€ O/‘%’o Dynamic 2
= 8829 %7 | ou 8
=) Generator
o
= MIM, Discovered
sl ; ; WS Proxy
WS Proxy Mobile Device s
S
R 8 | n \ 20
54 2 =g
o
2z — ik
85 = Web Service Providers g >
= o 8 o
] < Do
e 3 | a
|
Periodic Wi ice Interf)
@ Downloader eb Service Interface Builder of Device
of Web Service _ Method Client-side Platform-
Short Descriptions Text Matching Process info Proxy Class specific
Libraries
12 ®
® E - =
) S 2] —
AREIE :
(2]
a = |2 2 _
g 5 % Reflection
Repository of 7 % gosc. Library
Web Service Downloader of
5 Sh_o:_t Relevant
escriptions ;
P WSDL Files MIM Server

Figure 3. System architecture

The second process is the WSDL File Downloader which takes as input the URIs of the

shorted-listed services, and downloads the files if they are not in the cache. Finally, the third

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

main process is the Proxy Builder, which generates a client-side proxy class and sends it to
the mobile device via FTP. This same process identifies the number and types of input and
output parameters of the Web method whose name was passed by the Text Matching process,
and returns this information to the latter so it can be passed on to the device.

To speed up processing on the server and improve the scalability of the architecture, the
described three processes are multi-threaded and communicate through socket interfaces by
receiving and sending messages, and in some case sending files using FTP. Moreover, we
also improve the average response time of the server by caching the WSDL files while
assigning them time-to-live (TTL) values and keeping track of their access rate. This keeps
the list of cached WSDL files manageable and gives preference to those that are most used.

On the mobile device, the call to the MIM Server’s Web service returns the names, types,
and descriptions of the input and output parameters of the Web method to invoke. This is
used by the Dynamic GUI Generator to draw the GUI on the device, thus enabling the mobile
application to interact directly with the discovered Internet Web service by invoking its
method with parameter values input by the user and getting from it the corresponding results.
4. ANALYSIS

In this section we analyze the cache hit rate of the system and then consider its scalability,
which is about examining the performance of the MIM server under increased request rate.
4.1 Cache Hit Rate

The MIM Server caches WSDL files for its own use to reduce network traffic and speed
up the processing of the mobile device’s request. The cached WSDL files form a subset of
the set of possible WSDL files that may be downloaded. To get an idea of the size
relationship, about 570 files could be cached if a 10MB cache size is allocated and an average
WSDL size of 18KB is used. Following the lead of other works [3], we use the Zipf

distribution [40] to model the access pattern of Web services. With Zipf, the probability of

10

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

requesting item 7 (item 1 is the most popular) is 1/ (i ‘921]:;11/ k¢), where N is the total number

of items and @ is a parameter that controls the non-linearity of the distribution. Eventually,

most WSDL files in the cache will be popular. This roughly makes the probability of a cache

Sc ! Swspi

hit be the part of the area under the distribution curve: p= > 1/ (z’ 92;111/ k'g), where S¢

i=l
is the allocated cache size and Sysp, 1s the WSDL file average size. For illustration, the left
part of Figure 4 illustrates the effect of the value of @ on the access distribution, while the

right part shows the probability of cache hit for different cache sizes and 0 parameter values.

Zipf probability for a total of 180 items

>
= =
% 0.1 <
2 £
2 g
Qo o
(2] =
- 5}
£ >
2 oot =z
Z
©
2
)
4
(-9

0.001

“04
e Zipf Theta
0 30 60 90 120 150 180 3% gy T 0 P

. 0 parameter
Item’sindex %files incache ' 9%

0.0001

Figure 4. Zipf probability (left) and probability of cache hit (right)
Since the space allocated for caching the WSDL files is finite, a mechanism is needed for
cache replacement. For this, we use a version of the least recently used (LRU) policy that
works with objects having different sizes [1]. That is, when a file is to be added to a full
cache, more than one WSDL files may need to be removed in order to create sufficient space.
The size and a time stamp for each cached file are stored in a hash table, and each time there
is an access for a WSDL file, a counter is incremented and the time stamp is updated. The
dynamic frequency of a given WSDL file is the inverse of the number of accesses since the
last access. To create space for an incoming WSDL file with size S,, we remove from the

cache the least number of files whose cumulative size is greater than S, such that the sum of

11

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

their dynamic frequencies is the minimum. This removal policy will not change in a major
way the access distribution of WSDL files in the cache relative to the files on the Internet
because it is the files that fall on the tail end of the distribution curve that will tend to be
selected for replacement, and thus, the probability of hit remains generally valid.

4.2 Scalability Analysis

To analyze the MIM server’s scalability in terms of the number of users, we abstract the
operations of the server main processes and describe quantitatively the interactions between
each process and the underlying hardware resources. In our analysis, we define the main three
hardware resources that affect the server operation: memory, processor, and network. Storage
utilization was ignored as it poses no bottleneck in current server implementations. In line
with [5], for a smooth server operation and to insure affordable server response time, 1)
memory utilization must be below 85% to avoid page faults and swap operations, 2)
processor utilization must stay below 75% to make room for kernel and other third party
software to operate with no effect on the overall server operation, and 3) network utilization
should be kept under 50% to prevent queuing delays at the network interface.

In our analysis, it is convenient to model the processor and network performances using
queuing theory, but first, we need to decide on the appropriate queuing model. Considering
processor performance, it is well established that an M/G/1-RR (round robin) queuing model
would be suitable [4], [17], [37]. It is designed for round-robin systems (like operating
systems) and is generic, as it requires the mean and variance without the full distribution of
the service time. This model assumes that requests to the processor follow a Poisson
distribution, so that the distribution of the inter-arrival time between requests is exponential
with mean / requests/second, and each request is given a time slice on the processor. Since all
requests in our case have the same priority and have low variations in their sizes, the queuing

model can be reduced to M/G/1-PS (processor sharing). We assume that at full utilization, the

12

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

processor can serve u, requests per seconds, basically the inverse of a job size, denoted by

total processing time. It then follows by queuing theory and little’s theorem that the processor

utilization is pp = 4/u,. The memory utilization py, is given by the amount of memory used by
the server M, divided by the total memory M7: py, = M,/Mr. Finally, the network utilization
pw 1s the number of arriving requests 4 over the number that can be handled uy: py = Aun,

also by applying little’s theorem. The requests to the network card can be modelled by a

Poisson random process, where the service time is constant, basically the transmission delay

[22], so an M/D/1 queuing model is appropriate to be applied. We now derive the utilizations

s0 we can obtain an expression for the maximum number of simultaneous user requests.

1. The periodic downloader process is a single threaded process that sleeps for 7, and then
wakes up to download information from the UDDI registries. It is independent of the
number of users and thus represents a fixed cost in terms of server resource consumption.

2. The text matching process is multithreaded, whereby the number of threads is equal to the
number of users having pending requests. Each thread performs a first stage text
matching, sleeps until WSDL files are ready, and then performs another text matching
function. Hence, each connected user maps to a thread that consumes memory to maintain
its stack, utilizes the processor to run the two instances of text matching, and incurs
additional overhead resulting from thread context switches. For the computations below,
we suppose that the first text matching instance takes 77 seconds to execute, the second
takes T, seconds, and each thread incurs a context switch of ¢ seconds, while thread
creation and destruction overheads can be ignored as they are in the order of
microseconds [26]. Considering the processor utilization, an expression for the number of
served concurrent users can be found by applying the expression of the average number
of requests in the processor, and it is Np=A/(u,~Aup) [21]. It follows that the total memory

used by the process is H+NpxST, where ST is the thread stack size and H is the dynamic

13

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

memory allocated. The main components of H are the WSDL files that must be loaded
into memory for the second text matching operation. Assuming the shortlist of WSDL
files contains on average 3 WSDL files, and the average WSDL file size is S, then the
memory utilization of this process can be approximated by 3NpxS+NpxST. Concerning
the network utilization, the external network interactions of this process are limited to the
incoming user requests from the mobile devices and the outgoing response, and so, it will
not constitute a bottleneck. Actually, the MIM server interacts with the mobile devices
through its Web service, and the SOAP requests/responses are received/sent by its Web
service interface (shown in Figure 2). However, in this analysis we assume for simplicity
that the text matching process is the one that interacts with the mobile devices.

3. The WSDL file downloader process is also multithreaded, where in this case each thread
maps to a WSDL file to download. For each considered file, this process checks for its
existence in the cache, and downloads it from the Internet if a miss occurs. This process
receives A requests per second from the text matching process. It does not cause high
processing load, but rather a networking load that also affects the memory utilization. The
network can serve users at a rate of uy users per seconds, where each user corresponds to
an average of three WSDL files, each having an average size of S KB. Using a cache hit
rate of A, each user request will effectively be downloading 35(1-4) KB. Now, assuming
the network interface to the Internet has a bit rate of B kbps, we conclude that it can serve
un =B/(24S5(1-h)) users per second. Using the queuing model M/D/1, the number of
concurrent users waiting on the network interface is given by Ny= AXQun—Aun)/
2un*(un—uy) [10]. Each thread will have a stack allocated, and dynamic memory whose
size is equal to that of the file downloaded. Given that the execution code size is

negligible, the memory usage of this process can be approximated as 3S*xNy (1-4).

14

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

4. The proxy builder process is multithreaded too. Each thread maps to a user’s request, and
executes the software that will create the source code and compile it (“wsdl.exe”), and
FTPs the proxy class to the client device. A single invocation of “wsdl.exe” will incur a
processing load as well as a memory load. The latter is denoted by My and includes the
linked libraries and the WSDL file to generate the proxy class from. This results in a total
memory usage of NpxMy. For processing, we use Ty to symbolize the time of one
process and ¢, to denote the context switch time. Finally, the interaction between this
process and the client devices (i.e., FTP’ing the proxy) occurs in the internal network and
is not likely to be the bottleneck in the presence of the external network interface.

We now use the above definitions to develop expressions that lead to a measure of the load

on the server. To start with, the CPU can serve u, = 1/(T\+T>+Ty+ctcw) users per second.

From before, the processor utilization is pp = A/u, = A(T1+1>+Ty+c+cy), which must be less

than 0.75, or else, the processor will be the bottleneck and will limit the server’s scalability.

Next, the total memory usage of the server processes is M, =3NpxS +NpxST+3NyxS(1-

h)+NpxMy. Then, the memory utilization of the processes is given by py = (3NpxS

+NpxST+3NyxS(1-h)+NpxMy)/ M7 and must be below 0.85. Finally, the utilization on the
external network interface is given by py =24SxA(/-h)/B and should be below 0.5. The
expressions of pp and py are linear in 4, and their solutions yield Ap < 0.75/(T\+T>+Ty+ctcw)
and Ay < B/(24S(1—-h)), respectively. On the other hand, the expression of p,, is cubic in 4, and
its solution Ay, if it exists, is in the form Ay <Ay and Ayp<Aa<Aus, or Lyn<Ay<tan and Ay >Aas,
where Ay, Aan, and Ay are the possible solutions of pj, -0.85=0. We hence conclude by
stating the maximum number of sustained simultaneous requests per second: Am,x = min(/p,
An, Aum). The solutions are shown in the left chart of Figure 5 as plots of the utilizations versus
A (by setting #=0 and using values for the other parameters in accordance with the literature).

To explain these results, we consider as an example one request that entails downloading 3

15

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

18KB WSDL files. Having an available download rate of 256 kbps, the network interface
will be fully utilized for 1.7 seconds. This implies that for A >1, the network interface will
remain fully utilized and queuing will occur! This however is not unusual in computer
networking, where a given network card transmits or receives at full capacity for a period of
time, since packet buffering can mitigate the effects of temporary bottlenecks. However, the
network will start dropping requests if the high request rate is sustained for prolonged
periods. This leads us to investigating the probability of simultaneous requests: with K users

who could use the MIM server’s service to discover Web services, the probability of more

k(K A
than k users having requests being processed simultaneously is 1- z ~p'(1= p)*, where
i=0

p is the fraction of time the user will have a request in process. Considering the above
scenario, setting k to 1 (i.e., two or more simultaneous requests), varying the average duration
T during which the user submits one request (p=u/T, where u is the network utilization time
per one request), and considering several values of K, we get the results in the right chart of
Figure 5. These theoretical results indicate, for example, that if for every 1000 users a MIM
server is allocated, and given normal user access rates, the MIM server will be able to serve

every request. We confirm this conclusion when we describe the experimental results below.

1 o966 o g o@ma]
T [—6—10,000 users
0.9 .g.. —— 5,000 users
I g —&— 2,500 users
0.8 i ©
I o 0.1 [—#—1,000users
07 P
5 .. L £
E 0.6 , 7 §
N @
Z 05 H—Processor 2 0.01
= "™, .
o I utilization ~
s 04 i] =
% / —6— Network :3‘
< e o =
kS 0.3 , Utilization §0_001 i3
0.2 il —=—Memory | <
I Utilization &
0.1 A
0 Attt S S 0.0001
0 2 4 6 8 10 12 24 20 16 12 8 4 0
userrequest rate (A) Inter-Request Interval (hours)

Figure 5. Hardware utilization (left) and probability of simultaneous access (right)

16

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

We finish this section with a brief discussion of the server average response time, which
depends on the loading of the three hardware resources considered above. This time is mainly
the total of the processing time and network processing and delays. The components of the
former were derived above, while the network part mostly includes the delay of receiving the
WSDL files, queuing delay, and the Internet round trip time (R77). For each request, we
assume the MIM server requests all WSDL files immediately one after another, thus resulting
in nearly one RTT for all files, since they will be served in parallel by remote servers. The
reception delay is 24S/B (assuming on average of 3 WSDL files), as was defined above,

while the queuing delay depends on the number of requests in process: with N users, it is

N-1
iZ:(n - 1)(24S / B) = (24S/B)(N-1)/2. As an example, using 150 ms for the total processing

P
delay, the same values for § and B as before, 4 seconds for RTT, and having 60 concurrent
requests in process, we get an average response time of 0.15+4+1.73+50.98=56.86 seconds.
5. IMPLEMENTATION

The Web service client on the mobile device was implemented using the Windows .NET
Compact Framework (CF) and the C# programming language. The application was installed
on an HP iPAQ hx 2790 Pocket PC running the Windows Mobile operating system and set
up to communicate with a wireless access point using Wireless LAN. The MIM server was
implemented on a Fujitsu Siemens laptop with a Centrino Processor and 1GB of memory.
5.1 Discovering Web Methods

There are several UDDI registries available on the Internet that offer APIs for locating
desired services. For the purpose of evaluation, we restricted ourselves to the private
XMethods registry, which offers methods that allow for service summary structures for all
active services listed at Xmethods. After it starts, a background process on the MIM server
calls this method and caches the obtained service descriptions locally in a simple MySQL

database table. The mobile application on the Pocket PC binds to a proxy class that interfaces

17

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

to the MIM server’s developed Web service, which in turn offers a method that encapsulates
the functions discussed below. It is through this “remote” method that the user submits his
search query. At the MIM server, the query is matched against the cached descriptions of the
Web services using the Boyer-Moore algorithm [2], which takes two strings and searches for
the occurrence of one in the other. This algorithm is suitable for this type of applications as it
works the fastest when the alphabet is moderately sized and the pattern is relatively long. It
scans the characters of the pattern from right to left beginning with the rightmost character. In
our implementation, the measure of correspondence between the user-supplied search string
(e.g., P) and the Web service description string (7) was the aggregate length of the found
non-repeating matches between P and 7. The output of the matching process is a short list of
web services: ones that relate most to the input phrase. If the search returned more than five
services, the user was asked to supply a more specific phrase that better describes his need.
The next step is to obtain the WSDL files of the selected services. For each service, if the
file is not found in the cache, an HTTP Web request is created from the WSDL URL, and an
HTTP Web response is then generated from the request and put into a stream that constructs a
string builder that will contain the actual WSDL file. Each of the needed WSDL files is now
parsed in order to get the web methods of the web service and their corresponding
documentations. First, the whole XML file is searched to find the word "portType", then the
word “operation” (tells the name of the web method), and finally the word "documentation", as
seen in the example of Figure 6. For each service, the parser returns an array of operations,

which is a class consisting of two strings: the Web method’s name and its documentation.

(- <portType name="eurocvPortType'> |
(— Zoperafion name="ABOOT =
(=documentationzAbout EuroCv.eu and its services.</documentation=’
<input message="tns:ABOUTRequest" /=
<output message="tns:ABOUTResponse" /=
=/operationz

Figure 6. Identifying method names and their documentations in WSDL files

18

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

The next step in the process searches the documentations in the array of operations for the
best match with the search phrase, again using the Boyer-Moore algorithm. The outcome of
this search is one Web method that best-matches the input phrase.

5.2 Proxy Class Generation and Compilation

After identifying the Web service, the proxy (dll) is built from its WSDL file. This task
involves generating a class (source code), compiling it, and then sending it to the mobile
device where it is used for direct method invocation. The .NET/C#-specific implementation is
depicted in the class diagram shown in Figure 7, which illustrates the used classes and the
associationss among them. All the involved code runs on the MIM server, obviously except
the mobile application and the client proxy after being sent to the device.

Basically the URL of the discovered Web service by the MIM Server is used to get the
service’s details. More specifically, the Server retrieves the service descriptions and schemas
and saves them in a list, and then performs a set of steps to generate instances of classes
through which the source code for the service’s WSDL file is programmatically generated.
After generating the C# class, the assembly file (compiled proxy) is created through a set of
additional steps that uses compiler parameters and assemblies specific to smart devices.

The Reflection API allows a C# program to inspect and manipulate itself. It can be used
to effectively find the types in an assembly and dynamically invoke methods in it. In our case
Reflection was used to get the names and types of the identified Web method’s input and
output parameters and to store them in an array of structures that is returned to the mobile
application on the Pocket PC. With this information, the mobile application generates a
dynamic GUIL In our implementation, for every input parameter a text box along with a
corresponding label (using the parameter’s name) was drawn. Finally, after getting the user’s
input through the generated GUI, the method is invoked at run time, also using Reflection. At

last, the returned results are displayed in another dynamic GUI generated based on the output

19

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

parameters determined earlier. If the invocation returns a set of answers, we display two

buttons at the bottom of the form to allow the user to navigate through the results.

DiscoveryClientProtocol CodeGeneratorOptions CodeDomProvider
-References A
-Documents ® +CreateCodeNameSpace()
+DiscoverAny() 4
+ResolveAll()
o < target ICodeGenerator
[O]
ME CodeNameSpace
- P +GenerateCodeFromNameSpace() CSharpCodeProvider
Arrayl ist
Q
@ <«instantiate from—

C# Code g. +CreateGenerator()
2la S|A . . +CreateCompiler()
ole 2l - v <« instantiate from
52 E[E ;

ServiceDescriptionlmporter S
-ProtocolName : string = SOAP A -
-ServiceDescriptions o CompilerParameters
-Schemas 4 -ReferencedAssemblies
*Import() ICodeCompiler we ¥
+AddServiceDescriptions() P -
+Schemas.Add() %
+C ileA: blyFromS:)
ompileAssemblyFromSource() Eamlee g
% Assembly o
SystermReliecton retrieve info from » % M
| e
CompilerResults System.dll
Methodinfo | | Parameterinfo [PathToAssembly System.Xml.dll
g System.Web.Services.dll
g. o
v° MIM Server
- - Transferred
e String Client Proxy compiled
Transferred D\ Mobile assembly
method and 1 A .
parameter info |------ S 3 Device
(2] c 8_
S =
. . . [2]
MobileDeviceApp send invocation info » v
create » <-----
<« Send user entries

Figure 7. Class diagram that shows the implementation of the application
The developed mobile application was called SNAPP, which stands for Service Navigator
at Palm Proximity. Once the user starts SNAPP, the initial form is launched to display a GUI
comprising a textbox into which the user can enter the phrase that represents the desired
service functionality. Figure 8 shows a case of a user wanting to find an airport in a city. The
program determined that the best Web method is “getAirportinformationByCityOrAirportName”

found in the published “airport” Web service. The method takes one input parameter: an

20

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

airport name or a city name. As shown in the middle image, we display the description
supplied with the Web method to help the user interpret the purpose and use of the input
parameters correctly. Additionally, to enrich the dynamic GUI rendering, a library of over a
100 representative images were downloaded and stored on the MIM server and then linked
with themes or topics that could be associated with the requested services. When a proxy is

transferred to the mobile device, the corresponding image, if found, is sent along with it.

Figure 8. Application screenshots: user phrase (left), input parameter (middle), results (right)

6. EXPERIMENTAL EVALUATION

In this section we focus on the device battery power saving feature of the system and also
study its scalability since it is a concern with any server-based architecture. We also present
measurement results that indicate the user wait times under varying conditions.
6.1 Battery Energy Savings

To measure the energy consumption of the mobile device, we use a technique suggested
in [23] to compute the power drain by measuring the voltage drop across a known resistor on
the line between the power supply and the device. Figure 9 illustrates the setup. It consists of
an Agilent DSO3062A oscilloscope connected to a PC that runs data acquisition software for

capturing instantaneous battery voltages. After connecting the battery to the Pocket PC

21

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

externally, experiments revealed that two of the seven pins connecting the battery showed
non-negligible current, and supply power to the processor, memory, and Bluetooth and
WLAN communication interfaces. Two 0.375 ohm resistances were placed in series between
the Pocket PC and the battery to measure the voltage drop using the oscilloscope that feeds
the data to the desktop, which computes the current by dividing the measured voltage by the

resistance, and then the power by multiplying this current by the battery's voltage (3.7 V).

Agilent DSO3062A
Oscilloscope

foggde

- o
2
‘i

v

T | ———

BEE)

e e e

A e e

and e wa u REN A
HE BEREED EEEEE B

0.375Q
 —

Figure 9. Diagram of the power measurement setup

In the experiments, the idle power, processing power, and WLAN communication
interface power were isolated. Additionally, the power consumed by transmission and
reception were also differentiated. To obtain the average power value consumed during the
execution of a particular process, the instantaneous powers were averaged over its duration,
which was determined by modifying the code to record the times when the process starts and
when it finishes. Getting the actual energy spent in Joules was simply a matter of multiplying
the average power by the process duration. Figure 10 shows a sample of the captured
waveforms which yielded the average power values. The left graph shows the idle power

which rises for few hundred milliseconds every now and then in a random way.

22

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

Transmission

N
N
L

N

w
"
w
1

Power (Watts)

N

Power (Watts)
N

Power (Watts)

Ll e

Processing
0 . . r . r 0 T T T ' 0 r . r r
0 300 600 900 1200 1500 180 0 100 200 300 400 500 0 300 600 900 1200 1500
Time (msec) Time (msec) Time (msec)

Figure 10. Sample power measurements

The repetitive tasks, which run on the MIM server and were described in Section 3, are:
1) performing first round of string matching, 2) communicating with the Web servers to get
the WSDL files, 3) receiving the WSDL files, 4) applying a second round of string matching,
and finally 5) generating the source code and compiling the proxy. As we mentioned earlier,
our objective is to provide an estimate of the power savings that the mobile device achieves
by delegating the above tasks to the MIM server. To determine these savings, we measured
the consumed battery energy by running on the Pocket PC similar and mock-up tasks. For the
first four tasks, reasonably-close functions were developed and deployed, while for the last
one, a long loop that involved calling string manipulation and mathematical functions was
implemented to simulate the processing required to generate the source file and compiling the
proxy. The length of the loop was determined by measuring the time it took the MIM server
to generate and compile the source code from an 18 KB WSDL file. A list of 180 service
descriptions and associated WSDL files were stored on a server on the LAN to simulate the
Web servers. The purpose of this setup was to simplify and speed up the experiments and to
localize the delays (used in computing the energy) to the components of the architecture and
minimize the variability associated with communicating over the Internet. As part of the
setup for the experiments described below, 180 strings (sets of keywords) were developed to

respectively match the service and Web method descriptions in the associated WSDL files.

23

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

These strings were used to automate the experiments and eliminate the need for user
intervention. Moreover, the clock of the used Pocket PC was synchronized with that of the
PC that connected to the oscilloscope and computed the power. This was done to accurately
associate the measured values on the PC with the processes running on the device.

In the first experiment, the application was made to process all the search strings in a
random order. The recorded task durations and mean power were then averaged over all 180
runs. The obtained values are shown in Table 1, where the last row describes the idle power,
which is consumed by the PDAs even when no processing seemed to be involved. This power
is used to refresh the 32 MB of RAM and the LCD screen, and process some kernel events.
We measured the power consumption in idle mode, and found it to be 1694 mW with the
Bluetooth and WLAN interfaces on and Power Saving (PS) mode off, and 563 mW with the
Bluetooth, WLAN, and PS on. All measurements were taken using the second mode along
with the screen backlight off. In this regard, it should be noted that the average power values

shown in the table all include this “power floor” value.

Task Description Duration (sec) | Avg. Power (W)
Generating short list of service descriptions 0.54 2.08
Transmitting requests for WSDL files 0.45 2.8
Receiving WSDL files 1.36 1.44
Identifying matching Web method 0.68 2.14
Generating client-side proxy 0.85 2.26
Idling between tasks (cumulative) 6.14 0.56

Table 1. Average task durations and measured powers
To shed more light on the device battery power saving feature of the MIM server setup,
an additional experiment was conducted to study the request rate’s effect on the amount of
energy saved since it affects the processing duration. The request rate was varied between
one request every 15 seconds and one every 4 minutes. In this regard, it should be noted that
the high end of this range is equivalent to 120 users connecting to the MIM server, each
submitting a request every half hour, on average. The setup of the experiment is as follows:

for each of the 9 used request rates, the mobile client application submitted a request at the

24

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

end of the corresponding time period by randomly selecting one of 180 search strings. The
application was programmed to submit requests over a period of one hour, and as a result, the
number of total requests per run ranged between 240 and 15. To account for the effect of
caching the WSDL files on the MIM server, these files were not saved on the mobile device,
but instead, a simple data structure was developed to store the list of files that were
downloaded (after clearing it at the start of each run). A cache hit is then simulated by
skipping the download process of the WSDL file if its name is found in the data structure.
Regarding the random selection of search strings, two selection patterns were used: uniform
and strict Zipf (i.e., for @ values equal to 0 and to 1, respectively). The energy savings are
presented in the left graph of Figure 11 which relates greater savings to higher request rates.
This can be attributed mostly to the increase in cache hits, especially when the Zipf access
pattern is used (i.e., when the requested Web services are not equally popular).

To appreciate the significance of the savings, we derived approximate values for the
additional requests (Web method invocations) that a device can make due to the deployment
of the proposed architecture. For this, an estimate of the energy consumed by the device was
computed while the user is interacting with the application to enter the search string and
supply the parameters’ values. The average measured power was 1.69 Watts while the
average cumulative duration was around 25 seconds. With this data, the average number of
requests that could be made by the application on a single battery charge was calculated with
and without the developed architecture. This was done by dividing the capacity of the HP
1PAQ hx2790 Pocket PC (specified at 1440 mA-hours, which is equal to 19,181 Joules when
considering the battery voltage of 3.7 Volts) by the estimated total energy per request. The
difference is a rough estimate of the additional number of requests that could be processed by
the application on a single battery charge as a result of using our architecture when compared

to having the device do all the work. In this analysis, we assumed for convenience the device

25

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

is not running other applications, which is most likely untrue. Hence, we can think of the

obtained values that are also presented in the right graph of Figure 11 as best case scenarios.

Saved Node Energy per Request Additional Requests Performedon a
Single Battery Charge

10 100
8 E - 80 %
3 =
r 62 r 60 @
i 4% - 40 B
—B+ Uniform Access 3 3
) °
—6— ZipfAccess L 5 § i 20"2
5]
3 2
T T T 0 T T T O g
3/50 1/25 1/50 0 3/50 1/25 1/50 0 z

Average Node Request Rate Average Node Request Rate

Figure 11. Saved energy (left), and additional requests per charge (right)

At the end of this subsection, we should note that the average request response time
follows the same trends in the left graph (since the energy is the average power times the
duration), while pointing out that the average duration across all request rate values is 7.3
seconds in the case of uniform access, and 6.9 seconds in the case of strict Zipf access.

6.2 Scalability

The MIM server provides Web method discovery and proxy building services to mobile
clients, thereafter allowing them to interact direct/y with the Web servers. Moreover, the
MIM server caches the WSDL files of the requested services so they can be served from the
cache when requested in the future by other devices. This reduces the load on the server and
allows it to serve more users. To evaluate the scalability of the architecture, we conducted an
experiment which simulated the clients using threads running on another computer that we
refer to as the client computer. This computer was an NEC 1 Select M5410 laptop, with
Pentium M processor and 1 GB RAM. Hence, each mobile device client was simulated by a
thread on the client computer, which allowed for easily increasing the load on the MIM
server by increasing the number of concurrent threads that submit search phrases. For each

request it receives from the client computer, the MIM server spawns a thread and runs in it

26

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

the code that actually downloads the WSDL files and identifies the Web method, generates
the proxy and sends it to the client computer by FTP, and finally returns to the client the
name of the method and that of the Web service it belongs to.

In all the experiments described below, caching of WSDL files was not simulated, and
therefore, the presented results correspond to worst case scenarios. The sizes of the
downloaded and processed WSDL files varied between 4KB and 20KB. The search strings
used in the experiments were restricted so as to result in downloading WSDL files from a
collection of over 200 files which were determined a priori and which included the 180 files
mentioned earlier. Within each set, the number of simultaneous requests that were sent from
the client computer to the MIM server was increased until the server started dropping
requests. Moreover, every single experiment was run twice and the average was taken. The
measured values that we report are the total communication and processing times. The former
included mainly the total time it took to fetch the WSDL files from actual Web servers on the
Internet, as the communication delays with the client computer were negligible.

The results of the experiments are shown in the left two graphs of Figure 12, where the
left-most graph shows the total communication delays while the middle one shows the total
processing times. As we have explained earlier, the generated requests on the client computer
were virtually sent concurrently to the MIM server by the threads. The MIM server, on the
other hand, sent the replies (answers of the method invocations) sequentially to the client
computer as they were completed, as illustrated in the left graph. The times took increasingly
longer mostly because of queuing delays and processing of previous requests. The middle
graph presents the total processing times that correspond to the results in the left graph. They
initially increase as requests wait for their turns to be processed, but seemingly because of

multi-processing by the CPU, the remaining requests get almost equal shares of processing.

27

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

200 12 1 (o
—A—5clients g
15clients 10 °
160 £
— —8— i ©
S 25clients g @ 0.1
2 —e—50clients 28 A o
€120 1 o 2
= 120 | ——75lients E -g
=]
S 26 1 £ 001 1
8 o - ?
‘S 80 A @ —&—5clients || 3
S 8) 8
£ £4 1 15clients|{ A
E = ~
]] —=—25¢lients|| & 0.001 1 Lo
< 40 s I S——
g 2 1 —o—50clients F
- i —+—T75clients 3
¥ 4
(g a— . . : 0 . . . 0.0001
0 15 30 45 60 75 0 15 30 . _45 60 7 3600 3000 2400 1800 1200 600 O
Index of finished client Index of finished client Period (sec) in which user active

Figure 12. Scalability results: individual communication (left) and processing (right) times

The left graph shows that the MIM server was able to serve up to 75 simultaneous
requests, but upon examining the graph closely, we notice that a threshold for an acceptable
performance may be derived, and it corresponds to about 60 simultaneous requests. However,
by using a similar argument as that made in Section 4.2, the probability of more than 60
concurrent requests arriving at the server will be very low, even when the number of potential
users is large. The right graph in Figure 12 illustrates this probability in the case of 2500 total
“subscribers” accessing the server once within periods that are less than 1 hour. With
practical access rates (no more than once every 'z hour), the probability in this case will be
less than 0.1%, implying that the MIM server will be able to offer acceptable performance.

7. DISCUSSION

In this section we provide a qualitative assessment of the characteristics of the proposed
system and analyze its suitability to emerging development frameworks and device platforms.
7.1 Effectiveness

We define effectiveness as the ability of the application to give the user the needed
service. For a sample of search phrases, the upper part of Table 2 indicates the matched Web
method and the service exposing that method. It shows that the requests and responses are

highly correlated, which reflects the effectiveness of the search algorithm. The system gives

28

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

back desired results most of the time, but sometimes the invoked method does not meet the

user’s requirements. This usually occurs when the user enters a very general search phrase.

© < d o (%2]
o N q o) 0 d o S S
Q 5 5 o 2 | S S0 8)
) %) %)) T |a E > | Q 8’ m_% 5 & S 5 0 i3 %]
w 0 o s s Qo N e 0@ © QT &5 O Q .9 RS [e]
358 |5 (8, 8| S|oes8Y 8 |E5/S86EgRT|eg|Eg B
o c < L0 8 Q (08382 & 32':.&::,&&0 T2 6P| &
o »exD| N Oomdagdg o Oov|QIJIQL S YI=LQo|kxa| »
A=
[} 2 @ > £ LS @ = e
= O O o > o o| E S =
o ® @ = £ o3| & Sw| oS
o = p= = o © 1A 2l & Sw|l =
© o) o = £ € ¢ 2
it o} w w o | Solge|l56| 9 aX|l o
° o = res =) £} 8 ol 2c|l=z=5| @ L [T
> 9] Q Q c c cl 8o g| O a |
0.2 2 £ |= |= | =S Xx S w3 | gH|LLe|ln T (Z2 9
o> < © ® © © (3] Ke) ES|ao SE| = o >a| 2
25 < o © o} o L - |Ox|&8c|lco| O = 0= o
Qwn |O© = < c | = | D o |oW|=ala>|a |F |OX|®»
(@) (@) %
(@] o o (@] =
o L) o >
N o | o |N @ o 3
e @ o o |Mm = 9] o @ o
g c|es |88 |¢o g8 | 5| 5| €] 5 T
= = = = = o | L IS o oy i L %)
cs | § /3 |& & |8 |slz | |2 |=>|8| 5|22
o o = o > | 9 o 2 ol ts] = < (%)
S | o (= = > (= g | @ > a | ¢ | 3 S| 8| B
© - = 0 o o = 0 - o c E (o) = (&) o) c
O E O (06| = |06 O | ¢ o n o 0] L o ®»
Task1 | 08 | 05 | 08 | 11 | 06 | 05 | 09 | 06 | 06 | 07 | 06 | 06 | 08 | 07
Task2 | 37 | 53 | 54 | 56 | 49 | 46 | 60 | 52 | 46 | 62 | 49 | 48 | 53 | 6.0
Task3 | 5.31 | 7.60 6.43 | 8.68 391 | 432 | 3.92 | 404 | 480 | 520 | 7.80
Task1 = Generating short list of service descriptions
Legend: Task2 = Getting the WSDL files and identifying Web method
Task3 = Generation and loading proxy, dynamic GUI, and method invocation

Table 2. Effectiveness as inferred from the top rows (times are shown for reference)

7.2 Speed

After the server application starts, and then periodically later, it downloads available
service summaries from UDDI registries. The average time it took to download and store all
summaries is close to 8 seconds, but this delay corresponds to an offline step that does not
affect the user wait time. The response time of the user query depends on how busy the MIM
server is, as was elaborated in the Scalability section, and ranges between 5 seconds (when
the server is processing a single request) and 100 seconds (when the server is processing 75
requests). This time excludes the time taken by the user to type in the values of the input

parameters. Since the user “interferes” by supplying values to the input parameters almost

29

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

half-way into the process, the perceived wait time can be half of what it actually is.
7.3 Security

The MIM server does not cache content (Web service responses, or user supplied data).
This eases the user’s privacy concerns about data exchanged with the Web server, and about
tracking his activities. On the other hand, encryption and server authentication can be used to
protect the MIM server records and keep eavesdroppers from learning about the interests of
users. Moreover, to protect the proxy files sent from the MIM server to the mobile device,
many traditional mechanisms for securing the communication sessions between the wireless
devices and the server can be used. Nowadays, practically all Secure Socket Layer (SSL)
certificate providers support mobile devices. An example is GeoTrust [15], which offers SSL
certificates that enable secure connections to enterprise servers, like our MIM server. There is
even support for very-constrained devices to communicate securely with servers. An example
is the Kilobyte SSL (KSSL) by Sun Microsystems which is a small-footprint, client-side-only
implementation of SSL v3.0 for handheld devices [20]. This technology accounts for weaker
CPUgs, and for network latency, low bandwidth, and intermittent connectivity.
7.4 Suitability to Recent Platforms

In this section we consider the applicability of our proposed approach to two recent
mobile device platforms, namely Google’s Android and Apple’s iPhone. Android does not
have a built-in feature for consuming SOAP-based Web services, but a third-party
component, such as ksoap2, can be installed on the device to provide this capability. Such a
component will enable an Android client device to take part of our proposed architecture and
access offered Web services through MIM-server-generated Java proxy classes. In the case of
the iPhone, the Core Services framework found in the Cocoa Touch iPhone SDK can be used
to access Web services. More specifically, the WSMakeStubs utility can be called on the

MIM server to generate proxy classes that can be sent to iPhone clients.

30

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

7.5. Adaptability to REST

The major vendors continue to build the core Web services stack around SOAP, but
REST [19] is preferred by certain groups. Recently proposed systems for publishing REST
Web service descriptions, such as [35], and evolving technologies, like WSDL 2.0 [27], make
migration of our design to the REST style quite possible. Specifically, a hosting environment,
named SOAlive, was proposed in [35] for describing and deploying REST Web services. We
believe that this and similar efforts will soon lead to standardized models for publishing
REST Web service descriptions in a manner that is analogous to UDDI registries. Second, the
new WSDL 2.0 standard, which was designed with REST Web services in mind, includes the
semantics for describing such services. Therefore, to support RESTful services in parallel
with RESTless services, which is the likely future scenario, the MIM server can access a
system like SOAlive to download REST service descriptions and use them for short-listing
services based on the user request, and utilize the WSDL 2.0 file to identify the desired REST
service. Also similar to SOAP services, this WSDL 2.0 file can be used by a tool, such as
Axis 2 from Apache, to generate a proxy class [27] which can be used by the mobile device
in the same manner as that generated from the SOAP service WSDL file. The only difference
is that the proxy class generated from the REST WSDL will use the HTTP libraries, while
that generated from the SOAP libraries will use the SOAP libraries. This makes the MIM
server a common interface for both the SOAP and REST web services paradigms.

Our proposed solution compiles the proxy code generated from the WSDL file at the
MIM server and sends it to the mobile device. An alternative solution is to have the device
directly interpret the WSDL file, which, after all, is designed to be easy to parse and interpret
by a client in order to understand how to call the service. This is certainly a valid observation,
but to recognize the advantages of the proposed solution, we provide in the following a

detailed comparison between the two models. In the first one, the MIM server offloads most

31

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SE

RVICES COMPUTING

of the processing from the mobile device and saves it processing and communication

overhead. In the second model, the mobile device has to contact the UDDI registries itself,

fetch the de

WSDL files

scriptions of available web services, compile a short list, fetch and interpret the

, and then select the most suitable service and method to use. Table 3 compares

the two models, while referring to them as the ‘“client-stub execution” and the “wsdl

interpretatio

n” approaches, respectively. As illustrated, the proposed approach offers much

more advantages, especially when considering execution overhead and bandwidth efficiency.

Execution overhead

Client-Stub
Execution

Minimal overhead processing is required, once the proxy class is ready, it can be used directly after
reflecting its methods.

WSDL
Interpretation

The short-listed WSDL files must be parsed and interpreted at run time. Moreover, there is a need to
do the two stage comparison to find the appropriate WSDL file to use. However, online service
finders might be utilized to find a candidate WSDL file, without any comparison stage on the mobile
device. Although online service finders implies two or three stages of HTML file parsing to get the
WSDL file URL.

Comparison

The overhead from the client-stub execution approach is limited to the method reflection. However,
in the case of WSDL interpretation, the overhead consists of processing a high number of
descriptions to get candidate WSDL files, and then parsing them to get the final WSDL file before
interpreting its methods. Moreover, if an online service finder is used, the overhead execution
involves parsing several HTML files, and three WSDL files. Clearly, using client-stub approach has
a less execution overhead when compared to the WSDL interpretation approach in the context of a
mobile device.

Software Eng

ineering Practices

Client-Stub
Execution

Using existing libraries that process SOAP messages at the mobile device and using the proxy class
to interface to them.

WSDL
Interpretation

Either use the interpreted methods to interface to the existing SOAP libraries (generate the proxy on
the mobile device, which is infeasible), or develop new SOAP libraries that can be used to process
incoming and outgoing SOAP messages

Comparison

It is obviously a better software practice to use existing libraries that are optimized to the device
environment and the operating system. In fact, WSDL interpretation methods were used mainly to
bridge a gap till proxy class methods were implemented. This was the case in J2ME, for example,
when JSR-172 was released in 2004.

Bandwidth efficiency

Client-Stub
Execution

The client's interaction with the network is limited to exchanging SOAP messages and receipt of the
proxy class. The MIM server performs all the remaining interactions on behalf of the mobile device.

WSDL
Interpretation

The client has to search for matching web service, which involves exchanging data with online web
services finders, then interacting with servers to download the WSDL files, before interpreting them.
Another alternative is to download all the services' description instead of doing the online search,
but for a mobile device communicating over a wireless link, this is prohibitively costly in terms of
wireless bandwidth consumption and mobile device memory utilization.

Comparison

The proposed approach involves much less interactions with the external network, knowing that the
MIM server caches the downloaded service descriptions. The bottleneck for bandwidth efficiency is
the wireless link between the mobile and the MIM server. In the proposed approach, the extra traffic
incurred is due to sending the proxy from the MIM to the mobile. However, in the WSDL
interpretation case, the mobile has to first search online for the service, get the search results and
then download the WSDL files for the top matching services. The mobile will then have to access
the service customized pages to get the WSDL links. Assuming 3 matching services, the traffic will
amount to 3x(200+18)=650KB (experiments conducted on webservices.seekda.com showed that the
online search page is around 200 KB, while [25] reports the average WSDL file size to be 18 KB).

32

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SE

RVICES COMPUTING

On the other hand, in our approach, the compiled proxy has an average size of 100KB which is
much less than the 650 KB needed in the WSDL parsing approach.
Code Complexity
Client-Stub Requires developing code that utilizes reflection to call web services methods dynamically.
Execution
WSDL Requires developing code to parse and interpret WSDL files (no specific WSDL interpreters for
Interpretation | mobile devices are available). Additional code complexity is incurred in the two possible options:
1. Ifthe existing mobile device SOAP libraries are used, then interfacing code (proxy generation!)
needs to be developed.
2. 2. Else, new libraries need to be developed, or third party libraries are to be used
Comparison It is quite obvious that the proposed approach is simpler and requires no third party libraries, just
native libraries developed by the vendor or operating system developers.
Client Code Updates
Client-Stub No third party libraries are needed, updates occur automatically as part of the operating system
Execution updates.
WSDL More code is placed on the mobile client. This code is the developed application along with the
Interpretation | utilized third party libraries.
Comparison The proposed approach does not require additional client updates, as it does not utilize third party
libraries, in contrast to the WSDL interpretation approach.
Flexibility
Client-Stub We require the development of an application that performs minimal processing on the mobile
Execution device, and makes use of the existing functionalities on the mobile device. Moreover, proxy
generation is done using the vendor supplied tool (wsdl.exe as an example).
WSDL The client code is dependent on the specific platform, but more functionality needs to be
Interpretation | implemented using each platform, as more processing is needed on the mobile device. In addition,
third party libraries specific to each platform might be needed.
Comparison The proposed approach is more flexible as it makes use of existing functionalities. Furthermore, as
mentioned above, it requires less client updates as compared to the WSDL interpretation method.

Table 3. Comparison of proxy class generation and direct WSDL file interpretation

8. CONCLUSION AND FUTURE WORK

The presented architecture makes it possible for mobile device users to dynamically

invoke web service methods that meet their needs. The implemented solution overcomes
technical limitations, and also saves device battery power, thus extending its participation in
the wireless network. The scalability study can be used to decide on deployment of MIM
servers in the network: given the capacity of the server, the number and distribution of MIM
servers can be determined, knowing the cumulative expected request rate from users.

Our design provides Web service discovery services to personal applications running on
mobile devices, where individual services can be used to extend the functionality of such
applications. However, nothing precludes these applications from accessing composite Web
services that perform computationally-intensive tasks, as in bioinformatics [6], data mining

[38], and multimedia processing [16]. But, since Web service entities are usually autonomous

33

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

and heterogeneous, how to connect and coordinate them is a challenging task that is not
suited for mobile devices. As a future work, the MIM Server can be programmed with the
intelligence to identify a set of services whose collective functionality can serve the user’s
request. In fact, the MIM Server is well-suited to coordinate the functions of such services
and provide an interface to the mobile device which is consistent with the current design.
ACKNOWLEDGEMENT

This research was funded by the Lebanese National Council for Scientific Research
(LNCSR). The authors would like to acknowledge the valuable comments and technical
opinions of Mr. Habib Haddad and Dr. Imad Jureidini, the founders of Yamli.com.
REFERENCES

[1] C. Aggarwal, J. Wolf, and P. Yu, “Caching on the World Wide Web,” IEEE Transactions on
Knowledge and Data Engineering, v. 11, n. 1, 1999, pp. 94-107.

[2] R. Boyer and J. Moore, A fast string searching algorithm, Communications of the ACM. v. 20,
pp. 762-772, 1977.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like
distributions: evidence and implications,” Proc. IEEE INFOCOM, 1999, pp. 126-134.

[4] J. Cao, M. Andersson, C. Nyberg and M. Kihl, "Web server performance modeling using an
m/g/1/k* ps queue," 10th Int’l Conf. in Telecommunications, 2003. ICT 2003.

[5] Celimaris Vega Citrix Consulting, MetaFrame XP Oracle 11i Application Scalability Analysis,
2002, http://support.citrix.com/article/CTX101887

[6] A. Chakravarti, G. Baumgartner, and M. Lauria, “The Organic Grid: Self-Organizing
Computation on a Peer-to-Peer Network,” IEEE Trans. Systems, Man, and Cybernetics, v. 35,
n. 3, pp. 373-384, 2005.

[7] M. Chatti, S. Srirama, D. Kensche, and Y. Cao, "Mobile Web Services for Collaborative
Learning,"/EEE Int’l Workshop on Wireless Mobile and Ubiquitous Technology in Education,
Nov 2006, pp.129-133.

[8] CodePlex, ProxyFactory Home Page, available at www.codeplex.com/ProxyFactory

[9] R. Costello, Building Web Services the REST Way, available at http://www.xfront.com/REST-
Web-Services.html

[10] G. Dattatreya, Performance Analysis of Queuing and Computer Networks, Chapman &
Hall/Crc Computer & Information Science Series, 2008.

[11] I Duda, M. Aleksy, T. Butter, “Architectures for Mobile Device Integration into Service-
Oriented Architectures”, Int’l Conf. on Mobile Business (ICMB’05), 2005.

[12] R. Fielding and R. Taylor, “Principled Design of the Modern Web Architecture”, ACM Trans.
on Internet Technology, Vol. 2, No. 2, pp. 115-150, 2002.

[13] J. Flinn and M. Satyanarayanan, “PowerScope: A tool for profiling the energy usage of mobile
applications", 2"/ IEEE Workshop on Mobile Computer Systems and Applications, New
Orleans, Louisiana, pp. 2, 1999.

[14] G. Gehlen and L. Pham "Mobile Web services for peer-to-peer applications,"IEEE Conf. on
Consumer Communications and Networking, Jan 2005, pp. 427-433.

[15] GeoTrust Corp, http://www.geotrust.com/enterprise-ssl-certificates/georoot/

[16] X. Gu and K. Nahrstedt, “On Composing Stream Applications in Peer-to-Peer Environments,”

34

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]
[37]
[38]
[39]

[40]

IEEE Trans. Parallel and Distributed Systems, v. 17, n. 8, pp. 824-837, Aug. 2006.

V. Gupta, "Finding the optimal quantum size: Sensitivity analysis of the M/G/1 round-robin
queue," ACM SIGMETRICS Performance Evaluation Review, v. 36, pp. 104-106, 2008.

A. Halteren, P. Pawar, “Mobile Service Platform: A Middleware for Nomadic Mobile Service
Provisioning”, WIMOB 2006, Montreal, Canada.

R. Heffner, SOAP versus REST: A Comparison, available at
www.forrester.com/research/document/excerpt/0,7211,35361,00.html

C. King, “Securing the Wireless Internet Using "Kilobyte" SSL”, available

at http://www.sun.com/bigadmin/content/developer/howtos/kssl.html

L. Kleinrock, "Time-shared systems: A theoretical treatment," Journal of the ACM (JACM), v.
14, pp. 242-261, 1967.

J. Kurose and K. Ross, "Computer Networks and the Internet," in Computer Networking: A
Top-Down Approach, 4th ed., Pearson Education International, 2008.

R. Lee and R. Nathuji, “Power and performance analysis of PDA architectures", Techical
Report, MIT, Dec., 2000, available at http://www.cag.lcs.mit.edu/6.893-

f2000/project/lee final.pdf.

L. Li, M. Li, X. Cui, “The Study on Mobile Phone-Oriented Application Integration
Technology of Web Services”, Lecture Notes in Computer Science, v. 3032, Springer Berlin
Heidelberg, April 2004.

Y. Li, Y. Liu, L. Zhang, G. Li, B. Xie and J. Sun, "An Exploratory Study of Web Services on
the Internet," IEEE International Conference on Web Services (ICWS 2007), pp.380-387, 2007.
Y. Ling, T. Mullen, X. Lin, Analysis of optimal thread pool size, ACM SIGOPS Operating
Systems Review, 2000, v. 34, n. 2, pp. 42-55.

L. Mandel, Describe REST Web services with WSDL 2.0, Technical guide, IBM Co., May,
2008. Available at http://www.ibm.com/developerworks/webservices/library/ws-restwsdl/
Oracle Corporation, Oracle9i Application Server Oracle HTTP Server powered by Apache
Performance Guide Release, Part Number A86676-02, 2001
http://download.oracle.com/docs/cd/A95434 01/a86676/sizing.htm#1032856

O. Rendoén, F. Pabon, M. Vargas, J. Guaca, Architectures for Web services access from mobile
devices, 3" Latin American Web Congress (LA-WEB 2005), pp. 93 — 97, 2006.

R. Steele, K. Khankan, and T. Dillon, “Mobile web services discovery and invocation through
auto-generation of abstract multimodal interface”, Int’l Conf. on Information Technology:
Coding and Computing (ITCC 2005), Vol. 2, pp. 35-41, 2005.

Sun Microsystems, “JINI Technology Surrogate Architecture Specification”,
http://surrogate.JINI.org/sa.pdf, Oct. 2003.

C. Weyer, DynWsLib tutorial, available at
www.thinktecture.com/resources/software/DynWsLib/default.html

E. Sanchez-Nielsen, S. Martin-Ruiz and J. Rodriguez-Pedrianes, "Mobile and dynamic web
services," Emerging Web Services Technology, pp. 117-133, 2007.

Q. Sheng, B. Benatallah, Z. Maamar, and A. Ngu, “Configurable Composition and Adaptive
Provisioning of Web Services,” IEEE Trans. Services Computing, v. 2, n. 1, pp. 34-49, 2009.
I. Silva-Lepc, R. Subramanian, I. Rouvcllou, T. Mikalson, J. Diament, A. Iyengar, “SOAlive
service catalog: a simplified approach to describing, discovering and composing situational
enterprise services,” Int’l Conf. Service Oriented Computing, ICSOC 2008, pp. 422-37, 2008.
W3C, XForms — the next generation of Web forms, available at
http://www.w3.org/markup/forms/, 2007

A. Willig, “A Short Introduction to Queuing Theory,” [online document] July 21, 1999,
available at http://www.tkn.tu-berlin.de/curricula/ws0304/ue-kn/qt.pdf

R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-Peer Systems,” IEEE Trans.
Systems, Man, and Cybernetics, v. 34, n. 6, pp. 2426-2438, 2004.

Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and Managing Web Services:
Issues, Solutions, and Directions,” The VLDB J., v. 17, n. 3, pp. 537-572, 2008.

G. Zipf, Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.

35

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON SERVICES COMPUTING

Hassan Artail is a Professor at the American University of Beirut (AUB) where he is doing
research in Internet and mobile computing, mobile ad hoc networks, and vehicle ad hoc
networks. During the past six years, Dr. Artail has published over 85 papers in top
conferences and reputable journals. He obtained his BS and MS degrees in Electrical
Engineering with high distinction from the University of Detroit in 1985 and 1986, and a PhD
in Electrical and Computer Engineering from Wayne State University in 1999. Before joining
AUB in 2001, Dr. Artail was a system development supervisor at the Scientific Labs of
DaimlerChrysler, where he worked for 11 years in the field of system development for
vehicle testing applications.

Kassem Fawaz received the BE degree with high distinction in Computer and
Communications Engineering from AUB in 2009. He is currently a graduate student at the
Department of Electrical and Computer Engineering at AUB, where he is doing work in the
areas of mobile computing and ad hoc networks. Kassem received the Distinguished
Graduate Award upon graduation in 2009, and has to date published eight papers in Web
systems and pervasive computing. He is an IEEE member.

Ali Ghandour earned the BE and ME degrees in Computer and Communication Engineering
with distinction from AUB in 2008 and 2010, respectively, and he is currently a PhD student
in the Department of Electrical and Computer Engineering at AUB. His research interests
include web systems, vehicular ad hoc networks, and cognitive networks. He worked with
Ericsson as an intern during 2007, and has so far published 5 papers in the areas of cognitive
networks and Web systems.

36

