
 

  Abstract- Vehicular ad hoc networks, also known as 
VANETs, constitute a major pillar in making the dream 
of an Intelligent Transportation System (ITS) come true. 
By enabling vehicles to communicate with each other, it 
would be possible to have safer and more efficient roads 
where drivers and concerned authorities are supplied 
with timely information. Based on a short to medium 
range communication systems, VANETs can enable both 
safety and entertainment types of applications to come to 
reality. Unfortunately, the application layer has not 
received sufficient attention. Although some of the 
undergoing projects have touched on the subject, their 
works do not seriously cover issues dealing with actual 
implementations of VANET scenarios. This paper 
describes some application layer scenarios which we 
developed using the network simulator ns2. We describe 
the limitations of ns2 as it concerns VANET simulations 
and our implemented solution, and then move on to 
considering car braking and changing lane scenarios in 
order to demonstrate how such applications may work. 
 
Keywords – VANETs; Safety applications; traffic 
simulations; ns2 
 

I. INTRODUCTION 

With the emergence of Mobile Ad hoc Networks 
(MANETs), researchers conceptualized the idea of 
communicating vehicles giving rise to Vehicular Ad-hoc 
Networks (VANETs). VANETs are the main focus of 
engineers yearning to transform cars into intelligent machines 
that communicate in order to make the journey as safe and as 
entertaining as possible. In trying to achieve this goal, several 
research projects have been launched, most of which focus 
on lower layers of the network architecture, especially the 
physical and data link layers. A whole standard, the 
Dedicated Short Range Communications Standard (DSRC) 
has been developed, devoting a short to medium frequency 
range to automotive applications. Unfortunately, the 
application layer and its implementation have not captured 
the needed attention. This constituted the motivation behind 
our work on this project to simulate real-life VANET 
scenarios using the well-known ns2 simulator.  

VANETs applications can be divided into two major broad 
categories: Public safety applications and non-public safety 
or comfort applications. These applications range from the 

reduction of road causalities by means of brake warnings, 
intersection assistance, and collision avoidance systems to 
offering guidance to available parking lots, discovering the 
traffic situation on a planned route, and coordinating car flow 
and traffic lights. This paper stresses on the safety 
applications which are more fundamental for building a 
functional Intelligent Transportation System (ITS). 

The possibilities and opportunities of VANETs are 
limitless but so are the challenges associated with their 
implementations. Although VANETs represent a special case 
of MANETs, there are major differences between the two. To 
begin with, compared to MANETs, the topology of VANETs 
varies at a higher rate and thus suffers from frequent network 
fragmentation. It is important to note that with the initial 
deployment of VANETs, only a limited number of vehicles 
will be equipped with transceivers, which might worsen the 
problem of fragmentation. Several solutions for such 
problems have been proposed like increasing the 
transmission power and exchanging routing information in 
tables, however, they also suffer from many limitations 
concerning bandwidth, throughput, and cost. Another major 
challenge associated with VANETs is their vulnerability to 
several privacy and security breaches due to the large number 
of independent network members and the presence of the 
human factor. Therefore, certain measures must be imposed 
on vehicle-to-vehicle communication in order to alleviate 
security concerns. 

In the following section we discuss previous work that is 
available in the literature and concerns vehicle ad hoc 
networks. We then move on to describing the simulation tool 
we used before presenting the details of our simulations. 
Finally, we conclude with findings and recommendations. 

II. RELATED WORK 

To the best of our knowledge, no inter-vehicular 
communication systems for data exchange among vehicles or 
between vehicles and roadside units have been put into 
operation. Nevertheless, the advancements in wireless 
technologies and the rising awareness about the importance 
of safety measures in transportation systems have motivated 
research groups and companies to focus on solving 
fundamental and infrastructural VANET problems. This 
research was mostly oriented towards VANET simulation. 
As a matter of fact, there exist in the literature various 
simulation schemes that could be employed, but surprisingly, 

Dynamic Simulations of VANET Scenarios 
Hassan Artail, Malak Safieddine, Tania Safar, Malek El-Khatib, Tarek Ibrahim, Kassem Fawaz 

Department of Electrical and Computer Engineering 
Faculty of Engineering and Architecture 
American University of Beirut- Lebanon 

E-mails: {hartail, mhs32, tms08, mde01, toi00, kmf04}@aub.edu.lb 
 

 
 



 

very little work has been done to actually simulate realistic 
VANET scenarios. 

In [1] the simulation problem in VANETS is divided in to 
two parts, the first is to develop sound mobility models, both 
at the macroscopic and microscopic levels, while the second 
one is concerned with combining the developed mobility 
model with the used network simulator. Today there is a 
range of existing mobility generators that provide 
compatibility with several network simulators like ns2, 
GlomoSim, Qualnet, SWANS, and others. In this respect we 
mention a few, like VanetMobiSim [8], STRAW [4], SUMO 
[13], Virtual Track [16], and AutoMesh [14].  

A major issue that concerns these simulation tools is that 
the traffic generators and network simulators do not typically 
interact at run time, mostly because the various network 
simulators existed long before the traffic mobility generators, 
and were not designed with VANET applications in mind. 
The authors in [12] presented an integrated tool that 
combines two mobility models (IDM and MOBIL) with the 
network simulator OMNET to assess the performance of 
network layer protocols, while focusing on a specific routing 
scheme, namely the DYnamic MANET On demand (DYMO) 
protocol. It was shown that the proposed mode of coupling 
improves the accuracy of network layer performance 
characterization. Very recently, the authors in [15] proposed 
a system approach named Traffic Control Interface (TraCI) 
that is based on live interactions between the traffic generator 
and the network simulator using TCP/IP socket 
communication between each simulated node (vehicle) and 
the traffic generator. Actually, the authors provide an 
implementation for the interaction between the traffic 
generator SUMO and the network simulator ns2. In this 
paper, and in the context of dynamic VANET simulations, 
we took a different and more efficient approach. Instead of 
having the traffic generator communicate with every node, 
we only used it to a priori produce the mobility file (as is 
usually done), and then through socket communication and 
multithreading we allow client applications to interact with 
the scheduler of the simulator (ns2) to alter already scheduled 
events or to add new ones. Such applications could represent 
the driver or event handlers that react to dynamic road or 
weather conditions. 

 
In the following we briefly discuss two projects that have 

been initiated by consortiums which include automotive 
companies, technology suppliers, and academic institutions. 

A. FleetNet – Internet on the road 

The FleetNet project started in Germany in September 
2000 and was set up by a consortium of six companies and 
three universities including DaimlerChrysler AG, Robert 
Bosch Gmbh and Technische Universität Hamburg. As 
outlined in Enkelmann’s paper [6], the main objective of 
FleetNet was to develop a platform for inter-vehicular 
communication systems achieved by examining mobile ad 
hoc radio networks, through three classes: First, cooperative 
driver-assistance applications for safety; Second, local 
floating car data applications for information updates; and 
Finally, user communication and information services for 

entertainment [6]. Although this project aims to handle the 
various layers of the network architecture, the project’s 
website does not provide information related to the progress 
of the work nor about the implementation process. Moreover, 
the simulations being conducted are not apparently disclosed 
to the public, which makes it hard to build upon any achieved 
developments. 

B. CarTALK 2000 

CarTALK 2000 was started in August 2001 and funded 
within the ITS Cluster of the Fifth Framework Program of 
the European Commission. With the coordination of 
DaimlerChrysler, the project consortium assimilates the 
knowledge of European car manufacturers, IT industry, 
suppliers, and some expert research institutes. Its main 
objectives are the development of cooperative driver 
assistance systems as well as self-organizing ad-hoc radio 
networks [2]. CarTALK identifies three applications types: 
Information and Warning Functions, communication-based 
longitudinal control, and cooperative assistance systems. The 
last category comprises applications that focus on 
exchanging information among vehicles to assist the driver in 
resolving critical situations [2]. 

 
Other comparable projects also exist. Most notably, we 

mention the Simulation of Car-to-Car messaging project [5], 
the Network on Wheels (NOW) project [10], the CAR-2-
CAR Communication Consortium [3], and the CarLink 
project. The latter project developed in the university of 
Malaga aims to provide users with live data concerning 
weather and traffic through vehicle-to-vehicle and vehicle-to-
infrastructure communication. The simulation in Carlink is 
done mainly using VanetMobiSim as described in [9]. 

 
One can clearly see that a considerable number of projects 

have already been launched with the majority concentrating 
on exploring the physical and network layers of inter-vehicle 
communication. The application layer, however, remains 
theoretical where only suggestions of possible applications 
are provided. The aforementioned projects might have 
achieved progress in implementing this layer, but such 
progress remains mostly unpublished, possibly leading to 
duplication of work. 

III. NETWORK SIMULATOR (NS2) 

Simulation is the dynamic representation of a real life 
problem achieved by building computer models and running 
them under sensible assumptions. Since in our project 
validating the applications on a real vehicular network is 
infeasible, we used a simulation tool for analytically solving, 
testing, evaluating and demonstrating our proposed course of 
action. The network simulator ns2 [11], which we will 
discuss below, was employed to define the constraints and 
reactions of the vehicles being driven on the road. 

NS2 is a discrete event simulator that models various 
network protocols including wired, wireless, TCP, UDP, ad 
hoc routing, infrastructure, etc. In our project, we used it to 
simulate real-time vehicle driving scenarios. The simulator is 



 

composed of four major components which are the ns 
simulator itself, the network animator or NAM which is 
responsible of visualizing various outputs and providing the 
interface to generate ns scripts, the pre-processing subsystem 
that handles traffic and topology generation, and the post-
processing subsystem which performs simple trace analysis. 

A simulator has two basic tasks and therefore uses two 
different programming languages. On one hand, it simulates 
detailed protocols and efficiently manipulates bytes and 
packet headers, and implements algorithms that run over 
large data sets. On the other hand, it explores a number of 
scenarios through varying parameters and configurations. For 
satisfying the first job, it needs a programming language 
which is very fast to run but slower to change, namely C++. 
As for the second, OTcl is applicable because it runs much 
slower but can be changed very quickly [7]. The simulator 
employs tclcl binding to provide the glue, which makes 
objects and variables appear to both languages. 

Regarding functionality, ns2 is capable of covering the 
basic issues like setting up nodes and links, sending data 
from one node to another, monitoring a queue and starting 
NAM from tcl scripts to visualize the simulations. Moreover, 
ns2 provides features for running wireless simulations where 
one can define mobile nodes for which various network 
component parameters can be specified, including the link 
layer type, MAC protocol, the antenna type, the radio-
propagation model, and the wireless channel. The mobility 
models of the nodes can be either obtained from traffic-
pattern files available with the ns distribution, or by inputting 
trace files generated by vehicle traffic simulation programs.  

A. Limitations 

The network simulator ns2 employs a single-threaded 
event-driven scheduler. The simulator has two basic event 
types, namely “at-events” and “packets”. Each comprises a 
unique ID, a firing time, and a handler function to execute. 
At the beginning of the simulation the TCL file is read and 
evaluated so that all events are generated and inserted into 
the appropriate data structure. The scheduler maintains an 
internal clock in seconds to determine the execution times of 
events. Events are executed one at a time, and an event will 
not start execution until the one immediately before it in the 
scheduler’s data structure is fully processed. 

Once the simulation is started, the user or a runtime 
process cannot intervene to change the timings of events or 
add new ones. In VANET simulations this restriction can 
lead to unrealistic scenarios. For example, changing lane 
events and braking episodes depend on real-time traffic 
dynamics whose types and timings may not be known a 
priori, and thus cannot be specified in the TCL code at code-
writing time. Hence, there is need for integrating into ns2 
capability for dynamic simulations in order to implement 
realistic VANET scenarios. 

B. Implemented Solution 

To add dynamic simulation capability into ns2, 
multithreading functionality had to be implemented into the 
scheduler (actually in the constructor of the scheduler, so as 
to create the thread upon instantiation). A handler function 

was introduced which runs in an infinite loop waiting for 
input from a user application through a TCP socket.  
Theoretically, this input should consist of a TCL statement to 
be executed. The TCL statements are fed to the newly created 
thread through a client application which opens a TCP 
connection with the scheduler. Simulated cars are defined in 
the TCL code as an array of nodes, which makes the 
communication between the client (user application) and the 
server (scheduler) straightforward. Through monitoring the 
progress of the simulation (i.e., changing lanes, breaking 
events, travel speed, etc.) in real time, the user application 
can react by inserting events concerning particular cars with 
handlers to be executed at specified times. Finally, we note 
that using multithreading allows for employing third party 
agents that can act as drivers which feed braking and 
changing lane events to the simulation at runtime, and 
therefore turn the simulator into an emulator. 

IV. IMPLEMENTATION 

This section presents the three different scenarios that we 
implemented with descriptions and simulation snapshots. 

A. The Braking Scenario 

The breaking scenario simulates the topology’s reaction 
when a driver of a vehicle suddenly pushes the brakes. It 
respects the following general logic: the braking vehicle 
broadcasts a braking packet to inform its surrounding, only 
concerned vehicles will decelerate according to their relative 
positions. In what follows, we explain the details of this 
mechanism and show snapshots of the resulting NAM 
visualizations. 
 

 
Fig. 1. Braking Scenario Diagram 

1) Technical Description 

The main steps for simulating this scenario include 
attaching to each node in the topology the Brake Agent, 
which maintains its status and controls its behavior in 
braking situations. Besides, the Brake Packet Header, of size 
64B, is fabricated to include the main information needed in 
the inter-node communication. Finally, the TCL script reads 
the nodes movements file and initiates, under certain 
conditions, the C++ agent functions. 

In our simulation, we use in the TCL script a command 
specific to our Brake agent that invokes a random node to 
stop at a certain time instant. As a result, this node will 
periodically broadcast, over a defined transmission range 



 

(Tmax), a Brake packet containing its current position that 
includes the road and lane identifiers. As shown in figure 1, 
we quantized the covered area into R co-centric rings. 
Among the nodes within this range, only those in the same 
road and lane behind the stopping car will respond to the 
alarm. Each will compute the distance (d) separating it from 
the source and locate the ring (r) it belongs to. The calculated 
ring constitutes the base to compute the new velocity (Vnew), 
which is inversely proportional to the distance. Thus, as the 
vehicle gets closer to the source, it slows down until it 
completely stops before hitting the vehicle just in front it, and 
forwards the packet to its neighbors. The ring and speed are 
computed as follows: 

1*
max

+= R
T

dr   ⎟
⎠
⎞

⎜
⎝
⎛ −=

P
VV oldnew

11  

Moreover, nodes behind the stopping node and in different 
lanes will refrain from changing to that node’s lane to avoid 
congestion. This receiving node behavior is illustrated in the 
flowchart of Figure 2. 

 

2) Simulation Snapshots 

To validate our theoretical implementation, we visualize 
the topology using NAM. Below are successive NAM 
snapshots for a braking simulation, with the first node (car) 
of the upper lane stopping. Note how the nodes behind it are 
shown stopped behind each other, and how the nodes in the 
lower two lanes kept on going and passed by the stopped 
nodes. Also note that the nodes of the bottom lane are 
moving at a lower speed relative to the nodes in the middle 
lane.  
  
Simulation time = 9.37sec: 

 
 
Simulation time = 12.43sec: 

 
 
Simulation time = 16.47sec: 

 
 

 
Fig. 2. Flow Chart for the Braking Algorithm 

B. Changing Lanes Scenario 

This second safety scenario covers the case of a car 
changing its lane and the applicable safety rules regulating its 
behavior and that of its neighbors in its destination lane. 

1) Technical Description 

Again, we developed a Change Lane packet header and a 
Change Lane agent attached to all nodes. Through the TCL 
script, we trigger a random vehicle to move to a certain 
destination lane at some point of time. As s result, the vehicle 
broadcasts over a certain range a Discovery packet 
containing its position, speed, road, lane and destination lane, 
along with a timestamp common to all packets related to this 
incident. The purpose of this packet is to examine the safety 
of the road at that instance of time. Any node within the 
range receiving this Discovery packet will check if it is 
addressed to it by verifying that it is traveling in the assigned 



 

destination lane. Each related node will figure out its relative 
distance to the source. Here, we define a range in the 
destination lane, in front and behind the original vehicle, as 
illustrated in figure 3, in which the presence of any other car 
could lead to an accident. Accordingly, we might have three 
different situations: 

 
 

 
Fig. 3. Relative positions of the car changing lanes and its neighbors 

 
 

i. If the receiving node falls in this range, it prepares a 
Negative Acknowledgement packet and sends it to the 
original node asking it not to cross. 

ii. If it is outside this range in front of the concerned car, it 
means that it will not endager the crossing, and thus it 
replies with a Positive Acknowledgement, thus giving it 
the green light to cross. 

iii. If the receiving node is behind the range, there is still a 
probability for collision with the crossing car, depending 
of the speeds of the two cars. The receiving node 
caclculates the time it takes the notifying car to reach its 
stable position on the new lane (assuming the node will 
move in a 45o direction) and evaluates the time needed, 
using its current position and velocity, to reach this same 
point. Based on these time figures, if the cars intersect, 
the receiving node responds with a Negative 
Acknowledgement packet, otherwise with a Positive 
Acknowledgement packet. 

 
 After analyzing the different possible responses received 

from the neighboring nodes, the notifying node (i.e., the one 
that intends to change lanes) proceeds as follows. Before 
describing this however, it is important to note that the 
Change Lane agent at the notifying node keeps track of 
whether any response was received in response to the 
Discovery packet that was sent. In addition, it monitors for 
any Negative Acknowledgement that prohibits the car from 
changing its lane. The following is a summary of the 
behavior of the notifying node. 

 
• If during a certain time interval, no positive or negative 

acknowledgement packets were received, it is implied 
that the destination lane is empty and that it is safe for 
the car to cross. In technical terms, if the handler times 
out while the agent still indicates that no reply was 
received, it invokes the function for changing lanes. 

 

• If a Negative Acknowledgement packet is received, and 
corresponds to the same time stamp of the Discovery 
packet that the original node has broadcasted, no other 
positive or negative packets will be taken into 
consideration any more. Afterwards, using another 
handler, the node will wait for some time and repeat the 
whole process of examining the conditions of the road 
using a new Discovery packet. 

 
• If a Positive Acknowledgement packet is received, 

before a negative acknowledgement, it will be 
understood that the dangerous zone defined earlier is 
empty. This is because the distance between the 
notifying node and any other node in this region is 
smaller than the distance between it and a node outside 
the range, and thus Negative Acknowledgement packets 
from inside the region will be received before Positive 
Acknowledgement packets from outside it. However, 
this does not mean that it is completely safe now for the 
car to cross. This is due to the simple reason that 
additional Negative Acknowledgement packets might be 
sent from cars behind the zone but with a velocity that 
indicates a possibility for collision as explained before. 
Therefore, in our code we differentiated between 
Positive Acknowledgement packets arriving from in 
front of the range, and those arriving from behind it. If 
the packet is received from the front, a handler is called 
for the node to wait for a short time interval before 
crossing, to be on the safe side and to account for any 
negative acknowledgements that are on the way. On the 
other hand, if the Positive Acknowledgement packet is 
received from behind, the car directly calls the function 
of changing lane and moves to its destination lane. 

 
After discussing the different cases we noe illustrate how 
the node will change its lane when the time is appropriate. 
First, we assume that the car changes its lane while 
maintaining the same velocity it had while travelling on the 
original lane, follws a 45o path, and continues on the new 
lane with a velocity appropriate to this lane (i.e., same as 
that of those cars travelling on the new lane). In the 
changing lane function, the node calculates the time it 
needs to perform the change and saves it. Then, the setdest 
ns-2 command is called to move it to the other lane. After 
that and after having the handler function wait for the time 
just discussed, the setdest command is called again to make 
the node move to its initial destination set in the movement 
file, but along the modified path. 



 

 
Fig. 4. Flow Chart of Receiving a Discovery request 

 

The above is summarized in the charts of Figures 4 and 5. 

2) Simulation Snapshots 

The following sequence of snapshots demonstrate the 
relative motion of the vehicules and their reactions when the 
red (square), blue (circle), and green (triangle) nodes 
simultaneously decide to move to left, right, and left lanes 
respectively, at time = 5sec. Note that the left lane is the 
fastest relative to the other two ones. 

 
Simulation time = 5.26sec: 

 
 
 
 
 

Simulation time = 8.62sec. 

 
 
Simulation time = 11.5 sec:. 

 
 
 
 

 
Fig. 5. Flow Chart of Changing Lanes 

 



 

C. Braking with Changing Lanes Combined 

In the two previous scenarios, we implemented the braking 
and changing lanes algorithms as separate agents, where the 
nodes in the simulation were equipped with one or the other. 
In this scenario, we will combine the two algorithms in order 
to create a new agent that is capable of performing both of 
the two operations based on the situation encountered within 
the movement file. During the simulation, one or more nodes 
may attempt to brake while other nodes that are affected by 
this braking (moving nodes behind the braking ones) will try 
to change lanes in order to overcome the obstacle and reach 
their final destinations. We will not thoroughly describe the 
implementation in this section since it is a mere combination 
of the ones presented in the earlier sections with minor 
modifications.  

The following sequence of snapshots demonstrate the 
motion of the vehicules in blue (circles) and their reaction 
when the red (square) node decides to brake at 6sec. 

 
Simulation time = 6.43sec: 

 
 
Simulation time = 6.84sec: 

 
 
Simulation time = 10.02sec: 

 
 

V. CONCLUSION 

In this paper, we examined Vehicular Ad Hoc Networks 
and studied their main challenges and potential applications. 
The presence of such vehicular systems, if implemented in 
the future, will create opportunities for developing and 
deploying safety and leisure applications between vehicles. 
However, this versatility does not come for free, as there are 
numerous challenges that will be faced due to 
communication network flooding and high security risks. 

Believing that the work on such complex topic is a 
cumulative effort and requires an accumulation of research 
and work, we decided to be part of this new global research 
and add some contribution to it. First, we added a 
modification to the ns2 simulator in order to enable it to 
realistically simulate dynamic VANET scenarios. We 
simulated three real life scenarios of vehicles on the road. 
With the braking algorithm, we made sure that nodes behind 

the braking car decrease their speed gradually and gracefully. 
The second scenario, which concerns changing lane 
scenarios aimed at ensuring safe lane changes by the cars on 
the highway in order to minimize and even eliminate 
potential accidents. The third and final scenario was the 
combination of the previous two scenarios and intended to 
simulate more realistic traffic conditions, in which events 
would happen successively and wise decisions would be 
taken. It is worth noting that convenience-related applications 
can be added in the future and security threats can be 
accounted for without impacting the current implementation 
significantly. 

Finally, we acknowledge that in the descriptions of the 
implemented scenarios we may have implied that the car will 
react to the various conditions by taking braking and lane-
change actions autonomously. We note that this was done to 
simplify the discussion. In real-life, the onboard system in the 
car will have to engage the driver through warnings and 
sometimes using alarms when the situation worsens (i.e., 
when an action on the driver’s part is deemed by the system 
to be causing a potential accident). 

REFERENCES 

[1] C. Bonnet, J. Harri, and F. Filali, "Mobility Models for 
Vehicular Ad Hoc Networks: A Survey and Taxonomy", 
Research Report RR-06-168, Institut Eurécom, March 
2007. 

[2] CarTALK2000 project, August 2001. Available http: 
www.cartalk2000.net/ 

[3] Car-to-Car Communication consortium, http://www.car-
to-car.org  

[4] D. Choffnes, F. Bustamante, "An Integrated Mobility 
and Traffic Model for Vehicular Wireless Networks", 2nd 
ACM international Workshop on Vehicular Ad Hoc 
Networks (VANET 2005), September 2005, Cologne, 
Germany. 

[5] S. Eichler, T. Kosch, B. Ostermaier, and C. Schroth, 
“Simulation of Car-to-Car Messaging: Analyzing the 
impact on Road Traffic”. 13th IEEE International 
Symposium on Modeling, Analysis, and Simulation of 
Computer and Telecommunication Systems, September 
2005, Atlanta, GA. 

[6] W. Enkelmann, FleetNet - applications for inter-vehicle 
communication, IEEE IV2003 Intelligent Vehicles 
Symposium, June 2003, Columbus, OH. 

[7] K. Fall, K. Varadhan (Editors), ns Manual, URL: 
http://www.isi.edu/nsnam/ns/doc/index.html 

[8] M. Fiore, J. Harri, F. Filali, C. Bonnet, "Vehicular 
Mobility Simulation for VANETs," 40th Annual 
Simulation Symposium, March 2007, Norfolk, VA. 

[9] J. Härri, M. Fiore, F. Fethi, and C. Bonnet, 
“VanetMobiSim: generating realistic mobility patterns 
for VANETs, in Proc. 3rd ACM International Workshop 
on Vehicular Ad Hoc Networks (VANET'06), September 
29, 2006, Los Angeles, CA. 

[10] Network On wheels project, 2004, http://www.network-
on-wheels.de/ 

[11] NS2 simulator, http://www.insi.edu/nsnam/ns 



 

[12] C. Sommer, I. Dietrich, F. Dressler, "Realistic 
Simulation of Network Protocols in VANET Scenarios," 
2007 Mobile Networking for Vehicular Environments 
(MOVE 07), May 2007, Anchorage, AK. 

[13] SUMO - Simulation of Urban MObility, URL: 
http://sumo.sourceforge.net 

[14] R. Vuyyuru, K. Oguchi, "Vehicle-to-Vehicle Ad Hoc 
Communication Protocol Evaluation using Simulation 
Framework", in Proc. Conference on Wireless on 
Demand Network Systems and Services, January 2007, 
Oberguyrgl, Austria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[15] A. Wegener, M. Piorkowski, M. Raya, H. Hellbruck, S. 
Fischer, J. Hubaux, "TraCI: An Interface for Coupling 
Road Traffic and Network Simulators," 11th 
Communications and Networking Simulation 
Symposium (CNS 2008), April 2008, Ottawa, Canada. 

[16] B. Zhou, K. Xu, M. Gerla "Group and Swarm Mobility 
Models for Ad Hoc Network Scenarios Using Virtual 
Tracks", in Proc. 2004 IEEE Military Communications 
Conference (MILCOM 04), October 2004, Monterey, 
CA. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


