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DCIM: Distributed Cache Invalidation Method 
for maintaining cache consistency in wireless 

mobile networks 
Kassem Fawaz, and Hassan Artail, Senior Member, IEEE 

Abstract— This paper proposes a client-based cache consistency scheme that is implemented on top of a previously proposed 
architecture for caching data items in MANETs that caches submitted queries in special nodes, called query directories (QDs), 
and uses them to locate the data (responses) that are stored in the nodes that requested them, called caching nodes (CNs). We 
have previously proposed a server-based consistency scheme, named SSUM, and in this paper, we introduce a totally client-
based scheme that is termed DCIM which works by having the QD nodes monitor the TTL values of the cached data items and 
estimate update patterns on the server to adapt the TTL values accordingly. The QDs also monitor the request rates for data 
items and decide accordingly which items to prefetch. DCIM is analyzed to assess the delay and bandwidth gains (or costs) 
when compared to polling every time, and was also implemented and simulated it using ns2 along with two other client based 
schemes to assess its performance experimentally. The consistency ratio, delay, and overhead traffic are reported versus 
several variables, and DCIM shows to be superior when comprared to existing systems. 

Index Terms— cache consistency, data caching, database caching, invalidation, MANET, TTL.  
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1 INTRODUCTION

OBILE devices are the building blocks of mobile 
ad-hoc networks (MANETs). They are typically 
characterized by limited resources, high mobility, 

transient availability, and lack of direct access to the data 
source (server).  In MANET environments, data caching is 
essential because it increases the ability of mobile devices 
to access desired data, and improves overall system per-
formance [14] [25]. In a typical caching architecture, sev-
eral mobile devices cache data that other devices fre-
quently access or query. Data items are essentially an ab-
straction of application data that can be anything ranging 
from a database record, a webpage, an ftp file, etc. 

The major issue that faces client cache management 
concerns the maintenance of data consistency between the 
cache client and the data source [2]. All cache consistency 
algorithms seek to increase the probability of serving 
from the cache data items that are identical to those on 
the server. However, achieving strong consistency, where 
cached items are identical to those on the server, requires 
costly communications with the server to validate (renew) 
cached items, considering the resource limited mobile 
devices and the wireless environments they operate in. 
Consequently there exist different consistency levels de-
scribing the degree to which the cached data is up to date. 
These levels, other than strong consistency, are weak con-
sistency, delta consistency [4][5], probabilistic consistency 
[7][10], and probabilistic delta consistency [12].  

With weak consistency, client queries might get served 
with inconsistent (stale) data items, while in delta consis-

tency, cached data items are stale for up to a period of 
time denoted as delta. In probabilistic consistency, a data 
item is consistent with the source with a certain probabili-
ty denoted as p. Finally, probabilistic delta consistency is 
a mix of the previous two approaches, where a certain 
cached item is at most delta units of time stale with a 
probability not less than p.  

There are several mechanisms in the literature that ap-
proach the cache consistency issue in MANETs by at-
tempting to optimize client server communication while 
trying to keep the data as fresh as possible. These me-
chanisms can be grouped into three main categories: push 
based, pull based, and hybrid approaches [5]. Push-based 
mechanisms are mostly server-based, where the server 
informs the caches about updates (pushes the updates) 
that have occurred to its source data. Pull-based approach-
es are client-based, where the client asks the server to up-
date or validate its cached data. Finally, hybrid mechan-
isms combine push and pull methods, where either the 
server pushes data updates or the clients pull them from 
the server.  

An example of pull-based approaches is the TTL-based 
algorithms, where a TTL value is stored alongside each 
data item d in the cache, and d is considered valid until T 
time units go by since the last cache update. Such algo-
rithms are popular due to their simplicity, sufficiently 
good performance, and flexibility to assign TTL values to 
individual data items [13] [27]. Also, they are attractive in 
mobile environments [28], and are considered suitable in 
MANETs because of limited device energy and network 
bandwidth [25] [26], and frequent device disconnections 
[27]. Moreover, TTL algorithms are completely client 
based and require minimal server functionality. From this 
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perspective, TTL based algorithms are more practical to 
deploy and are more scalable. 

In this work, we propose a pull-based algorithm that 
implements adaptive TTL, piggybacking and prefetching, 
and provides weak to delta consistency guarantees. 
Cached data items are assigned adaptive TTL values that 
correspond to their update rates at the data source. Items 
with expired TTL values are grouped in validation re-
quests to the data source to refresh them. Moreover, in 
certain situations non-expired items are also included in 
the validation requests. The data source sends the cache 
devices the actual items that have changed, or simply 
invalidates them, depending on their request rates. This 
approach, which we call Distributed Cache Invalidation 
Mechanism (DCIM), works on top of the COACS archi-
tecture we introduced in [1] and which provides a 
framework for cooperative data caching in mobile ad hoc 
networks. To our knowledge, this is the first work that 
offers a complete client side approach employing adap-
tive TTL that achieves superior performance in terms of 
availability, delay, and traffic.  

In the rest of this paper, Section 2 discusses related 
work and reveals the contributions of the proposed sys-
tem, which we elaborate in Section 3. Section 4 provides 
an analytical analysis of the system, whereas Section 5 
presents the experimental results and discusses their sig-
nificance. Section 6 finishes the paper with concluding 
remarks and suggestions for future works. 

2 RELATED WORK 
Much work has been done in relation to cache consis-

tency in MANETs. The proposed algorithms in these 
works cover push, pull, and hybrid approaches.  

2.1 Push based approaches 
The work on push-based mechanisms mainly uses in-

validation reports (IR), where the server invalidates the 
cached items. The original IR approach was proposed in 
[2], but since then several algorithms have been proposed 
for MANETs. They include stateless schemes where the 
server stores no information about the client caches [2] [3] 
[15] [16] and stateful approaches where the server main-
tains the full state of its cached data, as in the case of the 
AS scheme [19]. Many optimizations and hybrid ap-
proaches were proposed to reduce traffic and latency, like 
SSUM [38] (more on it in Section 5), and the SACCS 
scheme in [17] where the server has partial knowledge 
about the mobile node caches, and flag bits are used both 
at the server and the mobile nodes to indicate data up-
dates and availability. All of these mechanisms necessi-
tate server side modifications and overhead processing. 
More crucially, they require the server to maintain some 
state information about the MANET, which is costly in 
terms of bandwidth consumption especially in highly 
dynamic MANET environments. DCIM, on the other 
hand, belongs to a different class of approaches, as it is a 
completely pull-based scheme. Hence we will focus our 
survey of previous work on pull-based schemes, although 
we will compare the performance of DCIM with that of 

our recently-proposed push-based approach, namely 
SSUM, in Section 5. 

2.2 Pull based algorithms 
Pull based approaches have also been proposed, and 

as discussed before, they fall in two main categories: 
client polling and Time to live (TTL).  

2.2.1 Client polling 
In client polling systems, such as those presented in 

[18] and [19], a cache validation request is initiated ac-
cording to a schedule determined by the cache. There are 
variants of such systems (e.g., [18] and [7]]) that try to 
achieve strong consistency by validating each data item 
before being served to a query, in a fashion similar to the 
“If-modified-since” method of HTTP/1.1. In [18], each 
cache entry is validated when queried using a modified 
search algorithm inside the network, whereas in [7] the 
system is configured with a probability that controls the 
validation of the data item from the server or the neigh-
bors when requested. Although client poll algorithms 
have relatively low bandwidth consumption, their access 
delay is high considering that each item needs to be vali-
dated upon each request. DCIM, on the other hand, at-
tempts to provide valid items by adapting expiry inter-
vals to update rates, and uses prefetching to reduce query 
delays. 

2.2.2 TTL-based approaches  
TTL-based approaches have been proposed for MA-

NETs in several caching architectures [25],[26],[34],[35], 
[36], and [14]. The works in [25], [26], and [34] suggest the 
use of TTL to maintain cache consistency, but do not ex-
plain how the TTL calculation and modification are done. 
A simple consistency scheme was proposed in [35] and 
[36] based on TTL in a manner similar to the HTTP/1.1 
max-age directive that is provided by the server, but no 
sufficient details are provided. Related to the above, we 
will show in Section 5 that approaches which rely on 
fixed TTL are very sensitive to the chosen TTL value and 
exhibit poor performance. In [14] a client prefetches items 
from nodes in the network based on a compiled index for 
request rates for every item, and maintains cache consis-
tency with the data sources based on adaptive TTL calcu-
lated similar to the schemes of the Squid cache and the 
Alex file system (described later). This two-layer scheme 
introduces large overhead traffic, as two invalidation 
schemes work in parallel. Furthermore, the TTL calcula-
tions are seemingly inaccurate and are based on heuristics 
[10]. Finally, a poll-every-time/TTL mechanism is pro-
posed in [42] for sensor networks, where three consisten-
cy modes are defined. The first is weak, where the item is 
served directly; the second is delta, where the item is 
served if it is at most d time units old, or else it is fetched; 
and the third is strong, where the item is always validated 
before serving. This approach is similar to the previous 
approaches in the sense that the expiry time is not well 
defined. Moreover, the strong mode has a high query 
delay, as was discussed in subsection 2.2.1.  

In summary, it appears that there is no scheme to date 
that presents a well-founded method for adapting TTL 
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values at the client side. In reality, the above approaches 
provide shallow integration of TTL processing into the 
cache functionality, and none of them gives a complete 
TTL-based cache consistency scheme for MANETs. Addi-
tionally, they do not include mechanisms for reducing 
bandwidth consumption, which is crucial in MANET en-
vironments. 

2.3 Hybrid Approaches 
Hybrid approaches combining push and pull mechan-

isms were discussed in [12], [21], [22], [23], and [24]. The 
work in [12] provides pull functionality using TTL 
processing and push functionality by invalidating the 
TTL value after each update at the server. In [21], stale-
tolerant items are served directly and their consistency is 
maintained using TTL. Other items are invalidated by the 
server if they have expired on the client side. Needless to 
say, the server has to store the TTL values of the cached 
items, which is not very practical. Push is implemented in 
[22] between servers and relay peers, while pull is em-
ployed between the caches and relay peers through TTL. 
The scheme in [23] generates and stores invalidation re-
ports at the gateway node to the internet. In each genera-
tion interval, the client nodes pull for the new report, and 
are thus expected to hold the most-recent ones. In [24] a 
hybrid push pull algorithm based on prediction is pro-
vided, where the server pushes data when it predicts it 
will be requested soon, whereas the client prefetches data 
when it is most likely being updated. These algorithms, 
similar to the push algorithms, require the server to main-
tain state information and incur processing overhead. 

2.4. TTL in web caches  
The several TTL algorithms proposed in MANETs are 

motivated by web caches research. These include the 
fixed TTL approach in [8] [27] and the adaptive TTL me-
thods in [6], [20], [11], and [29]. Adaptive TTL provides 
higher consistency requirements along with lower traffic 
[6], and is calculated using different mechanisms 
[6],[20],[11],[31], and [32]. 

The first mechanism in [20] calculates TTL as a factor 
multiplied by the time difference between the query time 
of the item and its last update time. This factor deter-
mines how much the algorithm is optimistic or conserva-
tive. In the second mechanism, TTL is adapted as a factor 
multiplied by the last update interval. In dynamic sys-
tems, such approaches are inappropriate as they require 
user intervention to set the factors, and lack a sound ana-
lytical foundation [10]. In the third mechanism in [40] 
TTL is calculated as the difference between the query time 
and the kth recent distinct update time at the server di-
vided by a factor K, and the server relays to the cache the 
k most recent update times. Other mechanisms were pro-
posed that take into consideration a complete update his-

tory at the server to predict future updates and assign 
TTL values accordingly [28]. The above approaches as-
sume that the server stores the update history for each 
item, which does not make it an attractive solution. On 
the other hand, the approach in [33] computes TTL in a 
TCP-oriented fashion (additive increase multiplicative 
decrease) [30] to adapt to server updates. However, it is 
rather complex to tune, as it depends on six parameters, 
and moreover, our preliminary simulation results re-
vealed that this algorithm gives poor predictions. Finally, 
the scheme in [10] computes TTL from an update risk that 
provides a probability for the staleness of cached docu-
ments. At the end, it is worth mentioning that piggyback-
ing was proposed in the context of cache consistency to 
save traffic. In [9] the cache piggybacks a list of invali-
dated documents when communicating with the server, 
while in [39] the server piggybacks a list of updated doc-
uments when it communicates with the cache. 

3 DCIM ARCHITECTURE AND OPERATIONS 
This section describes the design of DCIM and the in-

teractions between its different components.  

3.1 System Model  
The system consists of a MANET of wireless mobile 

nodes that are interested in certain data generated at a 
data source. The data source (server) is connected to the 
MANET via a gateway through a wired network. The 
data exchanged is abstracted by data items, as was men-
tioned in Section 1. The proposed DCIM system builds on 
top of COACS (Cooperative and Adaptive Caching Sys-
tem), which we introduced in [1] and did not include 
provisions for consistency. For completeness, a descrip-
tion of the COACS operations is provided in Appendix A. 
Briefly, the system has three types of nodes: query direc-
tories (QDs) that index the cached items, caching nodes 
(CNs) that hold the actual items, and requesting nodes 
(RNs). Although our recently-introduced SSUM [38] 
cache consistency scheme also builds on the COCAS ar-
chitecture, it is a server-based approach, whereas DCIM is 
completely client-based, introduced to realize the benefits 
of this class of systems. In this regard, DCIM comple-
ments SSUM, which is why we contrast their performance 
in Section 5 to see how they compare. 

3.2 Design Methodology 
The goal of DCIM is to improve the efficiency of the 

cache updating process in a network of mobile devices 
which cache data retrieved from a central server without 
requiring the latter to maintain state information about 
the caches. It also aims to provide high consistency guar-
antees while maintaining high data availability and keep-
ing bandwidth consumption under check.  
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The proposed system is pull-based, where the QDs 
monitor the TTL information and accordingly trigger the 
cache update and validate data items when necessary. 
DCIM is scalable by virtue of the QDs whose number can 
increase as the size of the network grows, and thus is 
more suitable to dynamic MANETs than a push-based 
alternative since the server does not need to be aware of 
CN disconnections. DCIM is also more suitable when 
data requests are database queries associated with mul-
tiple tables and attributes. In a push-based approach, the 
server would have to map a cached query to all of its data 
sources (table attributes) and execute this query proac-
tively whenever any of the sources is updated. Moreover, 
DCIM adapts the TTL values to provide higher consisten-
cy levels by having each QD estimate the inter-update 
interval and try to predict the time for the next update 
and sets it as the item’s expiry time. It also estimates the 
inter-request interval for each data item to predict its next 
request time, and then prefetches items that it predicts to 
be requested soon. 

3.3 DCIM basic design 
In DCIM, the caching system relies on opportunistic 

validation requests to infer the update patterns for the 
data items at the server, and uses this information to 
adapt the TTL values. These validation requests are es-
sentially requests to the server to refresh a set of data 
items. The QD polls the server frequently to know about 
the update times of the items it indexes. It also piggy-
backs requests to refresh the items it indexes each time it 
has reason to contact the server, basically whenever an 
item it indexes expires. Nevertheless, to avoid unneces-
sary piggybacks to the server, the QD utilizes a two-phase 
approach. Specifically, at the end of each polling interval 
(Tpoll), every QD issues validation requests for the items it 
indexes that have expired TTLs and have a high request 
rate. After a configurable number of polling intervals, 
denoted by Npoll, the QD issues a validation request for all 
the items it caches indexes for if at least one item has an 
expired TTL regardless of its request rate. We refer to the 
interval Npoll×Tpoll as the piggyback interval, Tpigg. When 
the server receives a QD’s request, it replies with a list of 
updated as well as non-updated items. The QD uses this 

information to adapt the TTL values to the server update 
rate for each item.  

Although in principle it achieves weak consistency, 
DCIM can attain delta consistency when at least one item 
has a TTL expired by the end of the piggybacking inter-
val, thus causing a validation request to be issued period-
ically. Hence, the QD ensures that data items are at most 
one piggybacking interval stale. Figure 1 shows a scenario 
where a QD is sending a cache validation request to the 
server that is transmitting updates to concerned CNs and 
returning to the QD a list of valid items. The messages 
being sent from the CNs to the QD indicate notifications 
which inform the QD that the data was actually updated, 
thus serving as acknowledgments. 

3.5 Detailed Design  
In the remainder of this section, we describe the opera-

tions of DCIM in details, but first, we list the messages 
which we added in DCIM (see Table 1) to those already 
introduced in COACs. The reader is referred to [1] for a 
complete description of the basic COACS messages. 

Figure 2 describes the basic interactions of DCIM 
through a scenario in which an RN is submitting a DRP 
for a query cached in the QD, but is in the waiting list at 
the moment because the corresponding item is being va-
lidated. Validation requests are issued by QD nodes using 
CURP messages that contain entries for items to be vali-
dated. Each entry consists of the query associated with 
this item, the timestamp of the item (last modification 
time), a “prefetch” bit (if set, instructs the server to send 
the actual item if it was updated), expired bit (indicates 
whether an item is expired or not), and the CN address 
that holds the item. Upon receiving a CURP message, the 
server identifies items that have changed and items that 
have not, and sends the QD in an SVRP the ids of items 
that did not change and those that changed but were not 
prefetched by the QD (does not have the prefetch bit set). 
It also sends the concerned CNs SUDP messages contain-
ing the actual items if they were prefetched by the QD 
and changed. A CN that receives such a message sends a 
URP message to the QD acknowledging the receipt of an 
update. Now the QD forwards to the CN the request that 
was in the waiting list using a DRP message, after which 
the CN sends the updated cached response to the RN via 
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Fig. 1. Overview of DCIM basic design 

TABLE 1 
PACKETS USED IN DCIM 

Packet Function Description 

CURP Cache Update Request Sent from QD to server to 
validate certain data items 

SVRP Server Validation Reply 
Sent from server to QD to 
indicate which items are 
valid 

SUDP Server Update Data 
Sent from server to CN. It 
includes updated data items 
and timestamps 

URP Update Received 

Sent from CN to QD to in-
form QD that it holds an 
updated version of a data 
item. 
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a data reply (DREP) message.  

3.5.1 TTL Adaptation 
The QD in DCIM has a partial picture about the update 

patterns of each item at the server using the piggybacking 
mechanism. The QD stores the last update time of each 
item from the last validation request, and uses this infor-
mation to predict the next update time. However, the 
QDs are after all mobile devices which have constraints in 
terms of power, processing, and storage capabilities, and 
obviously, sophisticated prediction schemes are slow and 
inadequate to use in this context. Alternatively, we use 
running average to estimate the inter-update interval, 
using timestamps of the items from the server’s responses 
to issued validation requests. The QD can then calculate 
its own estimation for the inter-update interval at the 
server, and utilize it to calculate the TTL of the data item. 
The running average, also known as the exponentially 
weighted moving average, has the form: IUI(t)=(1-
α)×IUI(t-1)+ α×LUI, where IUI(t) represents the estimated 
inter-arrival time at time t and LUI represents the last 
inter-update interval. The QD only needs to store the es-
timated interval and the last updated time. In fact, this 
method has many properties that make it suitable for 
usage in this situation, mainly because of its simplicity 
and ease of computation, the minimum amount of data 
required, and the diminishing weights assigned to older 
data [37]. There are two parameters that control this esti-
mator which are the initial value IUI(0) and the value of α, 
whose value should be small, i.e. between 0.1 and 0.2, as 
to minimize the effect of random fluctuations, even if it 
means larger convergence times [29] (proven in appendix 
B). In the simulations we describe later, α was set to 0.125 
and IUI(0) to 0.  

3.5.2 Server operations 
As this approach is basically client-based, the 

processing at the server is minimal. When the server rece-
ives the CURP message from the QD, it checks if all items 
have been changed by comparing their timestamps (Last 
modified time) with those included in the request. Items 
that have not changed are considered valid, and their ids 
are included in the SVRP response to the QD. On the oth-
er hand, items that have changed are treated in two ways: 
Expired items (those having the expiry bit set in the QD 

validation request) as well as non-expired ones but hav-
ing the prefetch bit set are updated by sending SUDP 
packets (which contain timestamps of the associated data 
items) directly to the CNs, which is possible since their 
addresses were included in the request. On the other 
hand, the server informs the QD about items whose ex-
piry and prefetch bits are not set (i.e., will not be re-
quested soon), using an SVRP message. This is summa-
rized in the flow diagram of Figure 3. 

3.5.3 QD Processing  
DCIM exploits the role of the QDs which store the 

cached queries plus their IDs, and the addresses of the 
CNs. A QD maintains two tables to manage the consis-
tency of the cache in the CN nodes: the Cache Information 
Table whose data is common to all queries that are locally 
cached (Table 2), and the Query Information Table that 
stores query-specific data (Table 3). As shown, the QD 
maintains the weighted average of inter-request interval 
(IRI) for each data item it references (in a manner similar 
to the computation of the inter-update interval). The 
process that runs on the QD includes two threads: a mon-
itoring thread and a processing thread. 
Monitoring Thread:  

The monitoring thread checks for expired data items, 
issues validation requests, and requests updates for data 
items. It performs these operations in two functions:  

Inner Loop Function: After each sleep period of Tpoll, the 
QD iterates over the entries corresponding to the cached 
data items it holds indexes for, checking each item’s TTL 
value. If an item has an expired TTL, the QD sets its ex-
piry bit and its state to INVALID. It also sets its “prefetch” 
bit if its average inter-request interval is lower than the 
piggyback period (Npoll×Tpoll), meaning that in this case the 
item will be requested with high probability by one or 
more RN nodes in the next piggybacking interval. The 
QD then sets the state field to TEMP_INVALID to indicate 
that a validation request for the item is in progress. Nor-
mally, nodes that request invalidated data items will have 
to wait till the server updates the CNs with new versions 
upon the request of the QD. At the end of the inner loop 
function, the QD prepares a CURP, and includes in it the 
validation requests for items that have expired and whose 
prefetch bits are set. 

Outer loop function: When the monitoring thread com-
pletes Npoll iterations (corresponding to the piggyback 
interval defined above), it checks if at least one item has 
expired. If so, it issues a validation request for the whole 
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Fig. 3. Decision flow at the server 
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collection of cached items stored at the QD. In this re-
quest, similar to the request issued in the inner loop func-
tion, a prefetch bit indicates whether the item is expected 
to be requested soon or not, as was described above. If it 
is set, the server sends the actual item, else, it just invali-
dates the item. Hence, the Outer Loop Function allows 
the QD to piggyback validation requests for all items 
when there is a need to contact the server.  

Note that the inner loop function issues validation re-
quests only for expired items having high request rates, 
and updates them if necessary. Expired items with low 
request rates have to wait for at most Npoll ×Tpoll to be vali-
dated, while those with high request rates wait for at 
most Tpoll. This mechanism reduces access delays by pre-
fetching items with high request rates. In this regard, we 
note that in delay intolerant networks, the “prefetch” bit 
can be set for each item regardless of its request rate, as-
suming it was requested at least once in the past. This 
way, all items will be prefetched and the hit rate will be 
forced to be 100% or very close to it (when accounting for 
items that are requested while being validated), thus re-
ducing response time considerably. Figure 4 summarizes 
the operations of the inner loop and outer loop functions. 
Processing Thread:  

This thread handles data requests from RN nodes and 
replies from the server (i.e., URP and SVRP packets) in 
response to CURP messages sent by the QD, and com-
putes the TTL value.  

Processing Data Request (DRP) Messages: The QD checks 
the state of the requested item in the DRP, and if it is 
INVALID, it issues an update request directly to the serv-
er, converts its state to TEMP_INVALID, and places the 
query on a waiting list. In the meanwhile, if the QD gets a 
DRP for the same item before the server replies, it also 
puts it on the waiting list. In all other cases, the query is 
processed by sending it to the CN that holds the result, in 
case of a hit, or to the nearest unchecked QD or the server, 
in case of a miss (regular COACS operations). 

Processing SVRP and Update Reply (URP) Messages: If a 
URP packet was received, it must be for an item that has 
changed at the server. The QD calculates its TTL as ex-
plained below, and if the URP makes reference to items 
that have requests placed in the waiting list, those items 
are forwarded to the corresponding requesting nodes. On 
the other hand, the SVRP is sent from the server in re-
sponse to a CURP packet, and it is expected to only con-
tain the ids of the items that did not change on the sever, 
and those of the items that changed but were marked as 
unexpired and had the prefetch bit not set in the CURP 
(illustrated in Figure 3). The QD updates the TTL of all 
elements whose ids are contained in the SVRP. It helps to 
reiterate here that there are items which were specified in 
the CURP packet but not sent as part of the SVRP because 
the actual updated data items were sent directly to the 
CNs, which in turn are expected to send acknowledge-
ments in URP packets to the QD for better reliability. If 
the QD does not receive an expected acknowledgement, it 
assumes that the CN is disconnected and will delete all 
associated queries, as per the design of COACS [1]. With 

TABLE 3 
ELEMENTS OF THE QUERY-SPECIFIC CACHE INFORMATION TABLE 
Parame-
ter 

Description 

qID Identifier of the locally cached query 
CNID Identifier of the CN that caches the response of this 

query 
Time-
stamp 

The last modified time of the data item 

TTL Time to live value associated with this query 
IRI The estimated inter-request interval for this query 
IUI The estimated inter-update interval for this query 
State Indicates if the item is expired or was issued for 

validation 

Fig. 4. Flow diagram illustrating the operations of the Inner Loop and 
Outer Loop (shaded part) functions  

TABLE 2
ELEMENTS OF THE GENERAL CACHE INFORMATION TABLE 

Parameter Description 
QDID Identifier of this QD 
WL Query processing waiting list 
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regard to this last procedure, the performance of the sys-
tem could be improved, especially in dynamic MANET 
environments, through incorporating into the design a 
replication scheme, similar to the one in [49], to replicate 
data on both the QDs and CNs and hence, reduce the 
overhead associated with node disconnections. 

TTL calculation: In DCIM, the exact TTL calculation 
performed by the QD depends on whether the item was 
expired at the server or not, which is information con-
tained in the SVRP and URP messages. The TTL value is 
calculated as per the steps below: 
• If the item has changed on the server, the SVRP 

would contain the last updated time (denoted by LU-
new) given the item had the prefetch bit not set, whe-
reas the URP would contain the same value if this bit 
was set. In both cases, TTL is set to (1-α)×IUI + α 
×(LUnew-Timestamp). 

• If the item did not change on the server and the TTL 
did not expire on the QD, the TTL will not be mod-
ified. This case occurs because of the piggybacking 
procedure described before. 

• If the item expired on the QD, but did not change on 
the server, the QD increases the TTL value by consi-
dering the current time as the update time, without 
changing the timestamp value it stores. The TTL val-
ue will be set to (1-α)×IUI+α×(CurrentTime - Time-
stamp).  
In some cases, the actual inter-update interval at the 

server could increase while the estimated inter-update 
interval may not have updated yet. This causes the last 
calculated inter-update interval when the item was last 
changed to become shorter than the time elapsed since 
the past update. This gives rise to a next expiry time oc-
curring in the past. Should this situation occur, the QD 
reacts by setting the next expiry time to the estimated 
inter-update interval added to the current time (the time 
the item was validated when its timestamp did not 
change, or changed but the change was too old). This is 
done by setting TTL to CurrentTime - Timestamp +IUI. This 
situation stays in effect until the item gets a new time-
stamp (changes on the server). 

For illustration purposes, a sample plot for the TTL 
value versus the update rate of a Poisson update process 

is depicted in Figure 5. This plot corresponds to an actual 
simulation run for 2000 seconds. It shows that at very low 
update rates (less than 1 update per 1000 sec) the esti-
mated TTL does not adapt well. However, in actuality, 
time goes beyond the 2000 sec considered for this simula-
tion time, meaning that more item updates will occur on 
the server during the longer time interval. It follows that 
the actual TTL will not diverge to the same extent as 
shown in Figure 5. 

4 ANALYSIS 
In this section we analyze DCIM to assess the band-

width gain over a given time period and the query re-
sponse time gain as compared to the poll-every-time 
(PET) consistency scheme. We define the bandwidth gain 
as the difference between the amounts of PET traffic and 
DCIM traffic, over a defined period of time. Similarly, the 
query response time gain is the difference between the 
times it takes to get the answer of the query (measured 
from the time of issuing the query) in the two schemes. 
The results are in agreement with the results shown in 
section 5. 

Requests for data within the ad hoc network and ar-
rival of data updates at the server are assumed to be ran-
dom homogenous Poisson processes, and thus the inter-
arrival times are represented by exponential random va-
riables, as was suggested in [13] and [47]. We use λR to 
denote the rate of requests and λU for the rate of updates, 
and suppose that each query or data item can have its 
own rate. The PDFs of the inter-arrival times are there-
fore: 

t
UU

t
RR

UR etPetP λλ λλ −− == )(,)(  (1) 
To estimate the response time and traffic gains, we 

borrow concepts from our previous work in [1] related to 
the average number of hops required in the various situa-
tions in the calculations: 
• HC is the average number of hops between the corner 

of the topology and a randomly selected node. It is 
used when a packet is sent between the server and a 
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node in system.  
• HR is the expected number of hops between any two 

randomly selected nodes.  
• HD is the expected number of hops to reach the QD 

containing the reference to the requested data, in the 
case of a hit. 

• Tin is the transmission delay between two neighbor-
ing nodes (i.e., one hop delay), while Tout is the round 
trip time between the MANET and the server.  

• SD is the size of the data packet and SR is the size of 
the request. 

In what follows, we list the time response and band-
width gains for DCIM when compared with the poll 
every time scheme. The details of the derivation are 
found in Appendices B and C.  

4.1 Response Time Gain  
In Appendix C we prove that the response time gain is: 

TRTT–PSC1×TRTT−(1−PSC1)×TMAN (2) 

TRTT=Tout+Tin(2HC+HD) (3) 

TMAN=Tin(2HR+HD) (4) 

1
1

−×−××= RTTU T
RTTUSC eTP λλ  (5) 

This measure is plotted in the left graph of Figure 6, 
where values consistent with the corresponding average 
values in the simulations were used: HD=5, HR=5.21, 
HC=5.21, Tin=5ms, Tout=70ms, and λU=1/500. As implied 
from the expression above, the gain mainly depends on 
the update rate which causes it to decrease slightly when 
it increases. This agrees with Figure 8 in the experimental 
section below, where at low update rates, the difference 
in delay is around 70 ms, and decreases to be around 60 
ms for large update rates.  

4.2 Bandwidth Gain  
The expression for the bandwidth gain (GB) is derived in 
Appendix D and is:  

Rtot×(Ppoll×Bpi+(1−Ppoll)×Bpo)−M×(BRpoll+Bpollnc+Bpollc) 
−BRpigg−Bpiggnc−Bpiggc 

(6) 

where the the bandwidth usage of PET is described as: 

Rtot×(Ppoll×Bpi+(1−Ppoll)×Bpo) (7) 

and the is the bandwidth usage of DCIM is given by:  

M×(BRpoll+Bpollnc+Bpollc)−BRpigg−Bpiggnc−Bpiggc (8) 

In the expressions above, Bpo=SR(HD+HC)+SDHC+SRHR, 
Bpi=SR(HD+2HC),Rtot = λRxTpigg,  TR = 1/λR, and Tpigg is the 
piggybacking interval. Tpoll is the polling interval, M is the 
number of polling intervals, RU T

poll eP ×−= λ , 

Bpollc=l×(SDHC+SRHR), Bpollnc=(K-l)×SRHC,  BRpoll=K×SRHC, 
Bpiggc= m×SD HC, Bpiggnc= (N-m)×SR HC,  BRpigg=N×SRHC, and 
N is the number of items. The expressions for l, K, and m, 
are found in Appendix D.  

The bandwidth gain is plotted in the right graph of 
figure 6, where in addition to the same hop count values 
as those utilized above, the following values are used: 

λR=λU=1/500, N=4000, M=20, SR=0.5KB, and SD=10KB. It 
is worth noting, that N represents the number of cached 
items (requested at least once before), rather than the total 
number of items; this matches the experimental results 
since not all items will be requested within the simulation 
time. In effect, the traffic resulting from large piggyback-
ing intervals is lower than that of small piggybacking 
interval. Also, the traffic demands for DCIM decrease 
exponentially for small polling intervals in both the ana-
lytical and experimental results shown in figure 11. 

5 EXPERIMENTAL RESULTS 
DCIM was implemented using ns2 [39], and a new data-
base class was developed that mimics the server process 
in storing and updating data items and in processing the 
validation requests. Moreover, timers in ns2 were utilized 
to implement the monitoring thread: the timer sleeps for 
the polling interval duration and then wakes up to run 
the inner-loop function. According to the design, after 
Npoll runs of the inner-loop, (the piggybacking interval) 
the outer-loop is invoked. Ns2 is a single threaded simu-
lator, but it is nevertheless capable of controlling the op-
erations of the timers autonomously, thus acting similar 
to a multithreaded application.  

Two additional schemes were implemented for com-
parison. The first is the poll-every-time mechanism (con-
sidered in Section 4), where each time an item is re-
quested, it is validated. The second is the fixed-TTL me-
chanism, where all items have the same expiry interval. 
The TTL value is calculated by adding to the current time 
the expiry interval, and when a TTL value expires, the 
item is flagged as such, and is fetched from the server 
whenever it is requested.  

The simulation area was set to 400×400m2, populated 
with 100 nodes that were randomly distributed. Propaga-
tion was according to the two-ray model, and the node's 
bitrate was set to 2 Mbps. Mobility was based on the ran-
dom waypoint model (RWP), with a maximum speed of 2 

TABLE 4 
SUMMARY OF THE DEFAULT SIMULATION PARAMETERS 

Simulation 
Parameter 

Default 
Value 

Simulation 
Parameter 

Default 
Value 

Simulation time 2000 sec Size of data item 10 KB 

Network size 400×400 
m2 

Number of data 
items updated/sec 20 

Wireless 
bandwidth 2 Mb/s Delay at the data 

source 40 ms 

Node trans. range  100 m Node request 
period 10 sec 

Number of nodes 100 Node request 
pattern 

Zipf 
(θ=1) 

mobility model RWP Node caching 
capacity 200 KB 

Node speed (v) 2 (m/s) Cache 
Replacement LRU 

Node pause time 30 sec Polling interval 2 sec 
Total number of 
data items 10,000 Npoll 20 
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m/s. The server node was connected to the MANET via a 
gateway and a wired link whose propagation delay was 
simulated at 40ms, thus resulting in a server access delay 
of 80ms. The server has 10,000 items which are updated 
according to a Poisson random process at an average rate 
of about 20 items per sec. In the default scenario, each 
node issues a data request every 10 seconds according to 
a Zipf access pattern, frequently used to model non-
uniform distributions [43]. In Zipf law, an item ranked i 
(1≤ i ≤ nq) is accessed with probability: ( )∑ =

qn

k
ki

1
/11/ θθ , 

where θ  ranges between 0 (uniform distribution) and 1 
(strict Zipf distribution). The default value of the Zipf 
parameter θ was set to 1. In the default scenario, there are 
7 QDs, and the capacity for each of the CNs (Caching 
Nodes) is 200 Kb. The simulation parameters are summa-
rized in Table 4. 

The reported results are from 5 experiments that in-

volve varying the request rate, the update rate, the zipf 
parameter, the maximum velocity, and the polling inter-
val. The results are the 1) consistency ratio (with the data 
source), 2) query delay (regardless of the source of the 
results), 3) cached data query delay, 4) uplink traffic, 5) 
downlink traffic, and 6) average overhead traffic.  

5.1 Varying the request rate 
In this experiment, the inter-request interval was varied 
between 5s and 120s. The results are plotted in the graphs 
of Figure 7, where it is evident that the poll every time 
scheme provides the highest consistency ratio (top left 
graph), since the requested items are validated for each 
request. This causes the items to be always fresh, except 
in certain cases when they change just after being vali-
dated. However, when using fixed TTL, the caches might 
serve stale items (as in the case of TTL=500s), but this 
possibility decreases when the TTL is less than the update 
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Fig. 7. Performance measures versus inter-request times 
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interval (as in the case of TTL=100s). As a matter of fact, 
getting the right TTL value is a key issue in relation to the 
performance of client-based consistency approaches. 
DCIM is a better approach as it tries to get the appropri-
ate TTL value through piggybacking, which helps in get-
ting a high consistency ratio. Moreover, prefetching 
enables DCIM to provide a high hit ratio, and hence 
much lower delays than the other approaches. As also 
shown, the query delay gets smaller after the item is 
cached but increases by a small margin due to less pre-
fetching as the request rate decreases. Finally, DCIM con-
sumes more traffic on the server side due to prefetching, 
but is not far off from the other schemes. As for the node 
traffic, by piggybacking large amount of items, DCIM 
consumes more traffic when compared to other ap-
proaches. However, as the request rate decreases, pre-
fetching does not happen that often, and this leads to 
lower traffic as shown in the graph. This is how DCIM 
adapts prefetching to the request rate of items. 

5.2 Varying the update rate 
The results for this scenario are shown in Figure 8. A TTL 
value of 100 seconds is less than the inter-update intervals 
in all of the scenarios simulated, and hence, it must pro-
vide the best consistency level. As shown, DCIM’s consis-
tency ratio coincides with that of TTL=100s, which is 
higher than that of TTL=500s. Of course, increasing the 
update rate in any TTL algorithm would decrease its con-
sistency, but with a good TTL estimate, an acceptable 
consistency could be obtained (comparing TTL=500s and 
DCIM at 100 update/sec). Nevertheless, fixed TTL ap-
proaches have higher hit rates than poll every time, but 
less than DCIM, which uses prefetching. This implies that 
the delay after caching is the lowest in case of DCIM, and 
does not vary as the update rate changes since prefetch-
ing is altered by request rates. 

The gains in delay and consistency, discussed above, 
are manifested in increased traffic as the update ratio in-
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Fig. 9. Performance measures versus the zipf parameter 
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creases. However this traffic is not high at the server, and 
is very low in the MANET (less than 20 kbps, while the 
bandwidth is 2Mbps). The reason for the high traffic is the 
piggybacking of requests, which increases in frequency as 
update rates increase. Without this traffic though, the 
QDs cannot infer the update rate and cannot calculate 
reliable TTL values. 

5.3 Varying the Zipf parameter 
This scenario studies the effect of the popularity of certain 
data items on performance by varying the value of the 
zipf parameter θ. The results are shown in Figure 9. 

In actuality, varying the θ value is analogous to vary-
ing the items’ request rates. This scenario actually shows 
the prefetching adaptation to the request rates, which was 
explained in Section 3. As θ increases, the diversity of the 
requested items decreases, meaning that a smaller subset 
of the items is requested more. In case one item is up-
dated at the server before the TTL expiration, more stale 

cached items will result. This is why the consistency ratio 
decreases as θ increases. However, DCIM maintains the 
TTL for all items regardless of their request rates, and this 
gives a constant consistency at 98%. The situation is re-
versed when considering hit ratios. For low θ values the 
hit ratio for fixed TTL is low since item requests are dis-
tributed across all items, which increases the probability 
of having expired items while the request interval is 
fixed. As θ increases, the same requests will be distributed 
over a smaller set which increases the probability of hits. 
It is evident that through prefetching, DCIM provides 
nearly constant hit rate, which results in lower delays as 
explained before. DCIM produces more traffic when 
compared to the other approaches, but this traffic de-
creases as θ increases since there is a smaller subset of 
items to validate. More items will have lower update 
rates, and will not be validated frequently. 

5.4 Varying the maximum node velocity 
The maximum node velocity is varied between 0 m/s and 
20 m/s, and the results are shown in the graphs of Figure 
10. Velocity changes show no special results, although 
there is a mild increase in the delay when velocity in-
creases, which is considered normal. In fact, the use of a 
proactive routing protocol masks the delay by making the 
paths always available.  

The graphs of Figure 10 show expected results as to-
pology changes are irrelevant to a client-based consisten-
cy scheme. We note that the reported MANET traffic is 
the DCIM overhead traffic and does not include routing 
traffic which must have increased as a function of veloci-
ty. 

5.5 Varying the polling interval 
Here, the polling interval is varied between 1 and 50 
seconds, while the fixed TTL values are kept constant, i.e. 
100 and 500 seconds. The results are shown the graphs of 
Figure 11. The increase of the polling interval causes a 
decrease in both the consistency ratio and the hit ratio, 
and consequently, an increase in the delay which remains 
below that of fixed TTL. Moreover, the traffic in the up-
link direction increases when the piggyback interval in-
creases due to the decrease of hit rate. Finally, it is worthy 
to point out the decrease in the traffic in the downlink 
direction at the server and the sharp decrease in the traffic 
per node in the network. These results are expected since 
with increasing the polling interval, the validation re-
quests originating from the inner loop function become 
more apart in time. However, when piggybacking inter-
vals are very large, the QD predicts that items will be re-
quested before the end of the piggybacking interval. This 
leads to more prefetching and consequently more traffic. 

5.6 Energy Consumption 
DCIM is by design a client based approach, and moving 
all the processing to the client side might hinder the mo-
bile devices’ energy resources. To investigate this possi-
bility, we conducted an experiment to assess the energy 
load DCIM imposes on the QD, in particular, as it is re-
sponsible for monitoring and maintaining the items in the 
cache. The experiment was conducted in two stages. The 
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Fig. 11. Performance measures versus the polling interval  
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first had to do with studying the processing energy con-
sumption of DCIM on a QD, while the second stage as-
sessed the network energy consumption on the QD. For 
this purpose we implemented the QD functions using 

J2ME and installed the application on a NOKIA E71 de-
vice. We monitored the performance of the application 
using an energy profiler, a tool distributed by NOKIA, for 
300 seconds. This tool measures the internal current in the 
device and reports real time power consumption. As 
shown in Figure 12, in the first 30 seconds, the application 
was initiating, so it does not count as a part of the QD 
operations. After that, it is obvious that processing con-
sumes little energy (less than 0.068W on average). 

In the second stage we monitored the energy con-
sumed by network communications, using the ns2 energy 
model. In ns2, a node is given an initial energy and after 
each transmission or reception, this energy is diminished 
by the transmission/reception power multiplied by the 
corresponding delay. The results are also shown in Figure 
12. The first 500 seconds are recorded from one of the si-
mulations performed before, where the average transmis-
sion/reception power was 0.115W. The average power 
consumption from networking and processing was 
0.182W. To understand the implications of this value, we 
consider the NOKIA E71 device’s battery which has a 
capacity of 1548 mA.h and a voltage rating of 3.9V. With 
this rate of power consumption, the battery would last for 
about 33 hours of continuous use. 

5.7 Comparison with SSUM 
This section compares the performance of DCIM to that of 
SSUM [38] (mentioned in Section 3.1). In SSUM the server 
propagates item update information to the QDs, and 
stores information about each item cached in the network. 
For each item, the server computes a ratio of its update 
rate to its request rate. If this ratio exceeds a given thre-
shold, the item is deleted from the server’s state table, and 
no updates about it are propagated. However, if this ratio 
falls below another threshold, the caching node receives 
updates for the corresponding item. Hence, SSUM reduc-
es traffic associated with unnecessary updates for items 
that are more updated than requested.  
DCIM is an alternative approach that relies on the client 
side to implement the consistency mechanism. The server 
stores no information about the MANET or the history, 
except for the last update time. Also, DCIM adapts to the 
update and request rates differently, but like SSUM, it 
also tries to save traffic. The update rates are estimated on 
the client side, rather than being maintained by the serv-

 
Fig. 13. Performance comparison between SSUM and DCIM  
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er. SSUM achieves consistency with a delta equal to the 
communication time between the server and caching 
nodes. However as illustrated by the graphs of Figures 7 
through 11, DCIM is able to provide consistency guaran-
tees if the polling interval is not high, but at the expense 
of increased traffic which is actually comparable to what 
SSUM generates.  
To confirm the above analysis, three scenarios from [38] 
were run to compare with DCIM using the same parame-
ters. The area was set to 750×750m2, the θ value used was 
0.5, the request period was 20 sec, and the item size was 
varied between 1 and 10 KB. All other parameters kept 
the same values as before.  We report the hit rate and 
node traffic versus the request interval, update rate, and 
node velocity. As seen in Figure 13, both approaches per-
form similarly in terms of hit rate and node traffic. The θ  
value of 0.5 means there is more variety in the requested 
items, and given there is a total of 10,000 items, the prob-
ability of requesting an element several times is low, 
which reflects on the hit rate values. As for the traffic, 
each approach has its share of traffic consumption. In 
SSUM, maintaining the server state, and pushing data 
items proactively constitute the traffic overhead. While in 
DCIM, validation requests and proactive fetching of items 
are responsible for its overhead traffic. 
   

In Table 5, we conclude the experimental results pre-
sented in this section, by comparing DCIM to the pre-

sented pull based approaches and SSUM according to 
delay, consistency, traffic, scalability, and practicality. 

 6 CONCLUSION 
In this work, we presented a pull based approach to in-
sure the consistency of data items cached inside a MA-
NET. This approach relies on estimating the inter update 
intervals of the data items to set their expiry time. It 
makes use of piggybacking to increase the estimation ac-
curacy of the inter update interval and to reduce traffic, 
and also prefetches items with high request rates to re-
duce query delays. We compared this approach to two 
pull-based approaches, namely fixed TTL and client pol-
ling, in addition to the server-based approach SSUM. The 
evaluation showed that DCIM provides better perfor-
mance than the first two schemes, but at the expense of 
more traffic (in the order of 10 Kbps), and a comparable 
bandwidth consumption with SSUM. 
For future work, we will explore three directions to ex-
tend DCIM. First, we will explore more sophisticated TTL 
algorithms to replace the running average formula. Se-
condly, as we indicated in section 3, we will design a rep-
lica allocation scheme to increase data availability. It will 
include an update propagation method that insures high 
data consistency among the replicas with minimum traf-
fic. Thirdly, DCIM assumes that all nodes are well be-
haved, as issues related to security were not considered. 
However, given the possibility of network intrusions, we 
will explore integrating appropriate security measures 
into the system functions. These functions include the QD 
election procedure, QD traversal, QD and CN informa-
tion integrity, and TTL monitoring and calculation. The 
first three are typical in a MANET and can be mitigated 
through encryption and trust schemes [44] [45]. The last 
issue was not tackled before, except in the case of [46] 
which considers the manipulation of invalidation reports. 
Similarly, a change in the last update time in DCIM can 
trick the QD into deciding that the item was not changed 
on the server. 
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