
 1

DCIM: Distributed Cache Invalidation Method
for maintaining cache consistency in wireless

mobile networks
Kassem Fawaz, and Hassan Artail, Senior Member, IEEE

Abstract— This paper proposes a client-based cache consistency scheme that is implemented on top of a previously proposed
architecture for caching data items in MANETs that caches submitted queries in special nodes, called query directories (QDs),
and uses them to locate the data (responses) that are stored in the nodes that requested them, called caching nodes (CNs). We
have previously proposed a server-based consistency scheme, named SSUM, and in this paper, we introduce a totally client-
based scheme that is termed DCIM which works by having the QD nodes monitor the TTL values of the cached data items and
estimate update patterns on the server to adapt the TTL values accordingly. The QDs also monitor the request rates for data
items and decide accordingly which items to prefetch. DCIM is analyzed to assess the delay and bandwidth gains (or costs)
when compared to polling every time, and was also implemented and simulated it using ns2 along with two other client based
schemes to assess its performance experimentally. The consistency ratio, delay, and overhead traffic are reported versus
several variables, and DCIM shows to be superior when comprared to existing systems.

Index Terms— cache consistency, data caching, database caching, invalidation, MANET, TTL.

—————————— ——————————

1 INTRODUCTION

OBILE devices are the building blocks of mobile
ad-hoc networks (MANETs). They are typically
characterized by limited resources, high mobility,

transient availability, and lack of direct access to the data
source (server). In MANET environments, data caching is
essential because it increases the ability of mobile devices
to access desired data, and improves overall system per-
formance [14] [25]. In a typical caching architecture, sev-
eral mobile devices cache data that other devices fre-
quently access or query. Data items are essentially an ab-
straction of application data that can be anything ranging
from a database record, a webpage, an ftp file, etc.

The major issue that faces client cache management
concerns the maintenance of data consistency between the
cache client and the data source [2]. All cache consistency
algorithms seek to increase the probability of serving
from the cache data items that are identical to those on
the server. However, achieving strong consistency, where
cached items are identical to those on the server, requires
costly communications with the server to validate (renew)
cached items, considering the resource limited mobile
devices and the wireless environments they operate in.
Consequently there exist different consistency levels de-
scribing the degree to which the cached data is up to date.
These levels, other than strong consistency, are weak con-
sistency, delta consistency [4][5], probabilistic consistency
[7][10], and probabilistic delta consistency [12].

With weak consistency, client queries might get served
with inconsistent (stale) data items, while in delta consis-

tency, cached data items are stale for up to a period of
time denoted as delta. In probabilistic consistency, a data
item is consistent with the source with a certain probabili-
ty denoted as p. Finally, probabilistic delta consistency is
a mix of the previous two approaches, where a certain
cached item is at most delta units of time stale with a
probability not less than p.

There are several mechanisms in the literature that ap-
proach the cache consistency issue in MANETs by at-
tempting to optimize client server communication while
trying to keep the data as fresh as possible. These me-
chanisms can be grouped into three main categories: push
based, pull based, and hybrid approaches [5]. Push-based
mechanisms are mostly server-based, where the server
informs the caches about updates (pushes the updates)
that have occurred to its source data. Pull-based approach-
es are client-based, where the client asks the server to up-
date or validate its cached data. Finally, hybrid mechan-
isms combine push and pull methods, where either the
server pushes data updates or the clients pull them from
the server.

An example of pull-based approaches is the TTL-based
algorithms, where a TTL value is stored alongside each
data item d in the cache, and d is considered valid until T
time units go by since the last cache update. Such algo-
rithms are popular due to their simplicity, sufficiently
good performance, and flexibility to assign TTL values to
individual data items [13] [27]. Also, they are attractive in
mobile environments [28], and are considered suitable in
MANETs because of limited device energy and network
bandwidth [25] [26], and frequent device disconnections
[27]. Moreover, TTL algorithms are completely client
based and require minimal server functionality. From this

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
• K. Fawaz is with the ECE Department, American University of Beirut,

Beirut, Lebanon. E-mail: kmf04@aub.edu.lb.
• H. Artail is with the ECE Department, American University of Beirut,

Beirut, Lebanon. E-mail: hartail@aub.edu.lb.

M

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

perspective, TTL based algorithms are more practical to
deploy and are more scalable.

In this work, we propose a pull-based algorithm that
implements adaptive TTL, piggybacking and prefetching,
and provides weak to delta consistency guarantees.
Cached data items are assigned adaptive TTL values that
correspond to their update rates at the data source. Items
with expired TTL values are grouped in validation re-
quests to the data source to refresh them. Moreover, in
certain situations non-expired items are also included in
the validation requests. The data source sends the cache
devices the actual items that have changed, or simply
invalidates them, depending on their request rates. This
approach, which we call Distributed Cache Invalidation
Mechanism (DCIM), works on top of the COACS archi-
tecture we introduced in [1] and which provides a
framework for cooperative data caching in mobile ad hoc
networks. To our knowledge, this is the first work that
offers a complete client side approach employing adap-
tive TTL that achieves superior performance in terms of
availability, delay, and traffic.

In the rest of this paper, Section 2 discusses related
work and reveals the contributions of the proposed sys-
tem, which we elaborate in Section 3. Section 4 provides
an analytical analysis of the system, whereas Section 5
presents the experimental results and discusses their sig-
nificance. Section 6 finishes the paper with concluding
remarks and suggestions for future works.

2 RELATED WORK
Much work has been done in relation to cache consis-

tency in MANETs. The proposed algorithms in these
works cover push, pull, and hybrid approaches.

2.1 Push based approaches
The work on push-based mechanisms mainly uses in-

validation reports (IR), where the server invalidates the
cached items. The original IR approach was proposed in
[2], but since then several algorithms have been proposed
for MANETs. They include stateless schemes where the
server stores no information about the client caches [2] [3]
[15] [16] and stateful approaches where the server main-
tains the full state of its cached data, as in the case of the
AS scheme [19]. Many optimizations and hybrid ap-
proaches were proposed to reduce traffic and latency, like
SSUM [38] (more on it in Section 5), and the SACCS
scheme in [17] where the server has partial knowledge
about the mobile node caches, and flag bits are used both
at the server and the mobile nodes to indicate data up-
dates and availability. All of these mechanisms necessi-
tate server side modifications and overhead processing.
More crucially, they require the server to maintain some
state information about the MANET, which is costly in
terms of bandwidth consumption especially in highly
dynamic MANET environments. DCIM, on the other
hand, belongs to a different class of approaches, as it is a
completely pull-based scheme. Hence we will focus our
survey of previous work on pull-based schemes, although
we will compare the performance of DCIM with that of

our recently-proposed push-based approach, namely
SSUM, in Section 5.

2.2 Pull based algorithms
Pull based approaches have also been proposed, and

as discussed before, they fall in two main categories:
client polling and Time to live (TTL).

2.2.1 Client polling
In client polling systems, such as those presented in

[18] and [19], a cache validation request is initiated ac-
cording to a schedule determined by the cache. There are
variants of such systems (e.g., [18] and [7]]) that try to
achieve strong consistency by validating each data item
before being served to a query, in a fashion similar to the
“If-modified-since” method of HTTP/1.1. In [18], each
cache entry is validated when queried using a modified
search algorithm inside the network, whereas in [7] the
system is configured with a probability that controls the
validation of the data item from the server or the neigh-
bors when requested. Although client poll algorithms
have relatively low bandwidth consumption, their access
delay is high considering that each item needs to be vali-
dated upon each request. DCIM, on the other hand, at-
tempts to provide valid items by adapting expiry inter-
vals to update rates, and uses prefetching to reduce query
delays.

2.2.2 TTL-based approaches
TTL-based approaches have been proposed for MA-

NETs in several caching architectures [25],[26],[34],[35],
[36], and [14]. The works in [25], [26], and [34] suggest the
use of TTL to maintain cache consistency, but do not ex-
plain how the TTL calculation and modification are done.
A simple consistency scheme was proposed in [35] and
[36] based on TTL in a manner similar to the HTTP/1.1
max-age directive that is provided by the server, but no
sufficient details are provided. Related to the above, we
will show in Section 5 that approaches which rely on
fixed TTL are very sensitive to the chosen TTL value and
exhibit poor performance. In [14] a client prefetches items
from nodes in the network based on a compiled index for
request rates for every item, and maintains cache consis-
tency with the data sources based on adaptive TTL calcu-
lated similar to the schemes of the Squid cache and the
Alex file system (described later). This two-layer scheme
introduces large overhead traffic, as two invalidation
schemes work in parallel. Furthermore, the TTL calcula-
tions are seemingly inaccurate and are based on heuristics
[10]. Finally, a poll-every-time/TTL mechanism is pro-
posed in [42] for sensor networks, where three consisten-
cy modes are defined. The first is weak, where the item is
served directly; the second is delta, where the item is
served if it is at most d time units old, or else it is fetched;
and the third is strong, where the item is always validated
before serving. This approach is similar to the previous
approaches in the sense that the expiry time is not well
defined. Moreover, the strong mode has a high query
delay, as was discussed in subsection 2.2.1.

In summary, it appears that there is no scheme to date
that presents a well-founded method for adapting TTL

AUTHOR ET AL.: TITLE 3

values at the client side. In reality, the above approaches
provide shallow integration of TTL processing into the
cache functionality, and none of them gives a complete
TTL-based cache consistency scheme for MANETs. Addi-
tionally, they do not include mechanisms for reducing
bandwidth consumption, which is crucial in MANET en-
vironments.

2.3 Hybrid Approaches
Hybrid approaches combining push and pull mechan-

isms were discussed in [12], [21], [22], [23], and [24]. The
work in [12] provides pull functionality using TTL
processing and push functionality by invalidating the
TTL value after each update at the server. In [21], stale-
tolerant items are served directly and their consistency is
maintained using TTL. Other items are invalidated by the
server if they have expired on the client side. Needless to
say, the server has to store the TTL values of the cached
items, which is not very practical. Push is implemented in
[22] between servers and relay peers, while pull is em-
ployed between the caches and relay peers through TTL.
The scheme in [23] generates and stores invalidation re-
ports at the gateway node to the internet. In each genera-
tion interval, the client nodes pull for the new report, and
are thus expected to hold the most-recent ones. In [24] a
hybrid push pull algorithm based on prediction is pro-
vided, where the server pushes data when it predicts it
will be requested soon, whereas the client prefetches data
when it is most likely being updated. These algorithms,
similar to the push algorithms, require the server to main-
tain state information and incur processing overhead.

2.4. TTL in web caches
The several TTL algorithms proposed in MANETs are

motivated by web caches research. These include the
fixed TTL approach in [8] [27] and the adaptive TTL me-
thods in [6], [20], [11], and [29]. Adaptive TTL provides
higher consistency requirements along with lower traffic
[6], and is calculated using different mechanisms
[6],[20],[11],[31], and [32].

The first mechanism in [20] calculates TTL as a factor
multiplied by the time difference between the query time
of the item and its last update time. This factor deter-
mines how much the algorithm is optimistic or conserva-
tive. In the second mechanism, TTL is adapted as a factor
multiplied by the last update interval. In dynamic sys-
tems, such approaches are inappropriate as they require
user intervention to set the factors, and lack a sound ana-
lytical foundation [10]. In the third mechanism in [40]
TTL is calculated as the difference between the query time
and the kth recent distinct update time at the server di-
vided by a factor K, and the server relays to the cache the
k most recent update times. Other mechanisms were pro-
posed that take into consideration a complete update his-

tory at the server to predict future updates and assign
TTL values accordingly [28]. The above approaches as-
sume that the server stores the update history for each
item, which does not make it an attractive solution. On
the other hand, the approach in [33] computes TTL in a
TCP-oriented fashion (additive increase multiplicative
decrease) [30] to adapt to server updates. However, it is
rather complex to tune, as it depends on six parameters,
and moreover, our preliminary simulation results re-
vealed that this algorithm gives poor predictions. Finally,
the scheme in [10] computes TTL from an update risk that
provides a probability for the staleness of cached docu-
ments. At the end, it is worth mentioning that piggyback-
ing was proposed in the context of cache consistency to
save traffic. In [9] the cache piggybacks a list of invali-
dated documents when communicating with the server,
while in [39] the server piggybacks a list of updated doc-
uments when it communicates with the cache.

3 DCIM ARCHITECTURE AND OPERATIONS
This section describes the design of DCIM and the in-

teractions between its different components.

3.1 System Model
The system consists of a MANET of wireless mobile

nodes that are interested in certain data generated at a
data source. The data source (server) is connected to the
MANET via a gateway through a wired network. The
data exchanged is abstracted by data items, as was men-
tioned in Section 1. The proposed DCIM system builds on
top of COACS (Cooperative and Adaptive Caching Sys-
tem), which we introduced in [1] and did not include
provisions for consistency. For completeness, a descrip-
tion of the COACS operations is provided in Appendix A.
Briefly, the system has three types of nodes: query direc-
tories (QDs) that index the cached items, caching nodes
(CNs) that hold the actual items, and requesting nodes
(RNs). Although our recently-introduced SSUM [38]
cache consistency scheme also builds on the COCAS ar-
chitecture, it is a server-based approach, whereas DCIM is
completely client-based, introduced to realize the benefits
of this class of systems. In this regard, DCIM comple-
ments SSUM, which is why we contrast their performance
in Section 5 to see how they compare.

3.2 Design Methodology
The goal of DCIM is to improve the efficiency of the

cache updating process in a network of mobile devices
which cache data retrieved from a central server without
requiring the latter to maintain state information about
the caches. It also aims to provide high consistency guar-
antees while maintaining high data availability and keep-
ing bandwidth consumption under check.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

The proposed system is pull-based, where the QDs
monitor the TTL information and accordingly trigger the
cache update and validate data items when necessary.
DCIM is scalable by virtue of the QDs whose number can
increase as the size of the network grows, and thus is
more suitable to dynamic MANETs than a push-based
alternative since the server does not need to be aware of
CN disconnections. DCIM is also more suitable when
data requests are database queries associated with mul-
tiple tables and attributes. In a push-based approach, the
server would have to map a cached query to all of its data
sources (table attributes) and execute this query proac-
tively whenever any of the sources is updated. Moreover,
DCIM adapts the TTL values to provide higher consisten-
cy levels by having each QD estimate the inter-update
interval and try to predict the time for the next update
and sets it as the item’s expiry time. It also estimates the
inter-request interval for each data item to predict its next
request time, and then prefetches items that it predicts to
be requested soon.

3.3 DCIM basic design
In DCIM, the caching system relies on opportunistic

validation requests to infer the update patterns for the
data items at the server, and uses this information to
adapt the TTL values. These validation requests are es-
sentially requests to the server to refresh a set of data
items. The QD polls the server frequently to know about
the update times of the items it indexes. It also piggy-
backs requests to refresh the items it indexes each time it
has reason to contact the server, basically whenever an
item it indexes expires. Nevertheless, to avoid unneces-
sary piggybacks to the server, the QD utilizes a two-phase
approach. Specifically, at the end of each polling interval
(Tpoll), every QD issues validation requests for the items it
indexes that have expired TTLs and have a high request
rate. After a configurable number of polling intervals,
denoted by Npoll, the QD issues a validation request for all
the items it caches indexes for if at least one item has an
expired TTL regardless of its request rate. We refer to the
interval Npoll×Tpoll as the piggyback interval, Tpigg. When
the server receives a QD’s request, it replies with a list of
updated as well as non-updated items. The QD uses this

information to adapt the TTL values to the server update
rate for each item.

Although in principle it achieves weak consistency,
DCIM can attain delta consistency when at least one item
has a TTL expired by the end of the piggybacking inter-
val, thus causing a validation request to be issued period-
ically. Hence, the QD ensures that data items are at most
one piggybacking interval stale. Figure 1 shows a scenario
where a QD is sending a cache validation request to the
server that is transmitting updates to concerned CNs and
returning to the QD a list of valid items. The messages
being sent from the CNs to the QD indicate notifications
which inform the QD that the data was actually updated,
thus serving as acknowledgments.

3.5 Detailed Design
In the remainder of this section, we describe the opera-

tions of DCIM in details, but first, we list the messages
which we added in DCIM (see Table 1) to those already
introduced in COACs. The reader is referred to [1] for a
complete description of the basic COACS messages.

Figure 2 describes the basic interactions of DCIM
through a scenario in which an RN is submitting a DRP
for a query cached in the QD, but is in the waiting list at
the moment because the corresponding item is being va-
lidated. Validation requests are issued by QD nodes using
CURP messages that contain entries for items to be vali-
dated. Each entry consists of the query associated with
this item, the timestamp of the item (last modification
time), a “prefetch” bit (if set, instructs the server to send
the actual item if it was updated), expired bit (indicates
whether an item is expired or not), and the CN address
that holds the item. Upon receiving a CURP message, the
server identifies items that have changed and items that
have not, and sends the QD in an SVRP the ids of items
that did not change and those that changed but were not
prefetched by the QD (does not have the prefetch bit set).
It also sends the concerned CNs SUDP messages contain-
ing the actual items if they were prefetched by the QD
and changed. A CN that receives such a message sends a
URP message to the QD acknowledging the receipt of an
update. Now the QD forwards to the CN the request that
was in the waiting list using a DRP message, after which
the CN sends the updated cached response to the RN via

Server

Wired
Network

1. Validation
Request

3. Server version of
some data items

4. Update
status and time
info

QD

CN

QD

CN

CN

CN

CN

CN

CN

CN CN

2. List of
Valid Items

Fig. 1. Overview of DCIM basic design

TABLE 1
PACKETS USED IN DCIM

Packet Function Description

CURP Cache Update Request Sent from QD to server to
validate certain data items

SVRP Server Validation Reply
Sent from server to QD to
indicate which items are
valid

SUDP Server Update Data
Sent from server to CN. It
includes updated data items
and timestamps

URP Update Received

Sent from CN to QD to in-
form QD that it holds an
updated version of a data
item.

AUTHOR ET AL.: TITLE 5

a data reply (DREP) message.

3.5.1 TTL Adaptation
The QD in DCIM has a partial picture about the update

patterns of each item at the server using the piggybacking
mechanism. The QD stores the last update time of each
item from the last validation request, and uses this infor-
mation to predict the next update time. However, the
QDs are after all mobile devices which have constraints in
terms of power, processing, and storage capabilities, and
obviously, sophisticated prediction schemes are slow and
inadequate to use in this context. Alternatively, we use
running average to estimate the inter-update interval,
using timestamps of the items from the server’s responses
to issued validation requests. The QD can then calculate
its own estimation for the inter-update interval at the
server, and utilize it to calculate the TTL of the data item.
The running average, also known as the exponentially
weighted moving average, has the form: IUI(t)=(1-
α)×IUI(t-1)+ α×LUI, where IUI(t) represents the estimated
inter-arrival time at time t and LUI represents the last
inter-update interval. The QD only needs to store the es-
timated interval and the last updated time. In fact, this
method has many properties that make it suitable for
usage in this situation, mainly because of its simplicity
and ease of computation, the minimum amount of data
required, and the diminishing weights assigned to older
data [37]. There are two parameters that control this esti-
mator which are the initial value IUI(0) and the value of α,
whose value should be small, i.e. between 0.1 and 0.2, as
to minimize the effect of random fluctuations, even if it
means larger convergence times [29] (proven in appendix
B). In the simulations we describe later, α was set to 0.125
and IUI(0) to 0.

3.5.2 Server operations
As this approach is basically client-based, the

processing at the server is minimal. When the server rece-
ives the CURP message from the QD, it checks if all items
have been changed by comparing their timestamps (Last
modified time) with those included in the request. Items
that have not changed are considered valid, and their ids
are included in the SVRP response to the QD. On the oth-
er hand, items that have changed are treated in two ways:
Expired items (those having the expiry bit set in the QD

validation request) as well as non-expired ones but hav-
ing the prefetch bit set are updated by sending SUDP
packets (which contain timestamps of the associated data
items) directly to the CNs, which is possible since their
addresses were included in the request. On the other
hand, the server informs the QD about items whose ex-
piry and prefetch bits are not set (i.e., will not be re-
quested soon), using an SVRP message. This is summa-
rized in the flow diagram of Figure 3.

3.5.3 QD Processing
DCIM exploits the role of the QDs which store the

cached queries plus their IDs, and the addresses of the
CNs. A QD maintains two tables to manage the consis-
tency of the cache in the CN nodes: the Cache Information
Table whose data is common to all queries that are locally
cached (Table 2), and the Query Information Table that
stores query-specific data (Table 3). As shown, the QD
maintains the weighted average of inter-request interval
(IRI) for each data item it references (in a manner similar
to the computation of the inter-update interval). The
process that runs on the QD includes two threads: a mon-
itoring thread and a processing thread.
Monitoring Thread:

The monitoring thread checks for expired data items,
issues validation requests, and requests updates for data
items. It performs these operations in two functions:

Inner Loop Function: After each sleep period of Tpoll, the
QD iterates over the entries corresponding to the cached
data items it holds indexes for, checking each item’s TTL
value. If an item has an expired TTL, the QD sets its ex-
piry bit and its state to INVALID. It also sets its “prefetch”
bit if its average inter-request interval is lower than the
piggyback period (Npoll×Tpoll), meaning that in this case the
item will be requested with high probability by one or
more RN nodes in the next piggybacking interval. The
QD then sets the state field to TEMP_INVALID to indicate
that a validation request for the item is in progress. Nor-
mally, nodes that request invalidated data items will have
to wait till the server updates the CNs with new versions
upon the request of the QD. At the end of the inner loop
function, the QD prepares a CURP, and includes in it the
validation requests for items that have expired and whose
prefetch bits are set.

Outer loop function: When the monitoring thread com-
pletes Npoll iterations (corresponding to the piggyback
interval defined above), it checks if at least one item has
expired. If so, it issues a validation request for the whole

− Process request by

executing the query.
− Send data with

generation time

Server

− Check if received update

is a new version of cache
item ⇒ Set update status

− Set received update time

Caching Node (CN)

Send request for data

Requesting Node (RN)

Query Directory (QD)

Monitoring
Thread

Processing
Thread

Queue
Queries whose
responses have
expired TTLs

Waiting List
Requests for which
updates have been
requested

1. DRP

2. CURP

4.
 S

U
D

P

5. URP

- Query
- Query ID
- CN address
- Timestamp
- Prefetch bit

- Query ID
- Data item
- Timestamp

- Query ID
- Timestamp

6. DRP

7. DREP

3. SVRP

- Query ID
- Timestamp

Fig. 2. Interactions between nodes in a DCIM system

Fig. 3. Decision flow at the server

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

collection of cached items stored at the QD. In this re-
quest, similar to the request issued in the inner loop func-
tion, a prefetch bit indicates whether the item is expected
to be requested soon or not, as was described above. If it
is set, the server sends the actual item, else, it just invali-
dates the item. Hence, the Outer Loop Function allows
the QD to piggyback validation requests for all items
when there is a need to contact the server.

Note that the inner loop function issues validation re-
quests only for expired items having high request rates,
and updates them if necessary. Expired items with low
request rates have to wait for at most Npoll ×Tpoll to be vali-
dated, while those with high request rates wait for at
most Tpoll. This mechanism reduces access delays by pre-
fetching items with high request rates. In this regard, we
note that in delay intolerant networks, the “prefetch” bit
can be set for each item regardless of its request rate, as-
suming it was requested at least once in the past. This
way, all items will be prefetched and the hit rate will be
forced to be 100% or very close to it (when accounting for
items that are requested while being validated), thus re-
ducing response time considerably. Figure 4 summarizes
the operations of the inner loop and outer loop functions.
Processing Thread:

This thread handles data requests from RN nodes and
replies from the server (i.e., URP and SVRP packets) in
response to CURP messages sent by the QD, and com-
putes the TTL value.

Processing Data Request (DRP) Messages: The QD checks
the state of the requested item in the DRP, and if it is
INVALID, it issues an update request directly to the serv-
er, converts its state to TEMP_INVALID, and places the
query on a waiting list. In the meanwhile, if the QD gets a
DRP for the same item before the server replies, it also
puts it on the waiting list. In all other cases, the query is
processed by sending it to the CN that holds the result, in
case of a hit, or to the nearest unchecked QD or the server,
in case of a miss (regular COACS operations).

Processing SVRP and Update Reply (URP) Messages: If a
URP packet was received, it must be for an item that has
changed at the server. The QD calculates its TTL as ex-
plained below, and if the URP makes reference to items
that have requests placed in the waiting list, those items
are forwarded to the corresponding requesting nodes. On
the other hand, the SVRP is sent from the server in re-
sponse to a CURP packet, and it is expected to only con-
tain the ids of the items that did not change on the sever,
and those of the items that changed but were marked as
unexpired and had the prefetch bit not set in the CURP
(illustrated in Figure 3). The QD updates the TTL of all
elements whose ids are contained in the SVRP. It helps to
reiterate here that there are items which were specified in
the CURP packet but not sent as part of the SVRP because
the actual updated data items were sent directly to the
CNs, which in turn are expected to send acknowledge-
ments in URP packets to the QD for better reliability. If
the QD does not receive an expected acknowledgement, it
assumes that the CN is disconnected and will delete all
associated queries, as per the design of COACS [1]. With

TABLE 3
ELEMENTS OF THE QUERY-SPECIFIC CACHE INFORMATION TABLE
Parame-
ter

Description

qID Identifier of the locally cached query
CNID Identifier of the CN that caches the response of this

query
Time-
stamp

The last modified time of the data item

TTL Time to live value associated with this query
IRI The estimated inter-request interval for this query
IUI The estimated inter-update interval for this query
State Indicates if the item is expired or was issued for

validation

Fig. 4. Flow diagram illustrating the operations of the Inner Loop and
Outer Loop (shaded part) functions

TABLE 2
ELEMENTS OF THE GENERAL CACHE INFORMATION TABLE

Parameter Description
QDID Identifier of this QD
WL Query processing waiting list

AUTHOR ET AL.: TITLE 7

regard to this last procedure, the performance of the sys-
tem could be improved, especially in dynamic MANET
environments, through incorporating into the design a
replication scheme, similar to the one in [49], to replicate
data on both the QDs and CNs and hence, reduce the
overhead associated with node disconnections.

TTL calculation: In DCIM, the exact TTL calculation
performed by the QD depends on whether the item was
expired at the server or not, which is information con-
tained in the SVRP and URP messages. The TTL value is
calculated as per the steps below:
• If the item has changed on the server, the SVRP

would contain the last updated time (denoted by LU-
new) given the item had the prefetch bit not set, whe-
reas the URP would contain the same value if this bit
was set. In both cases, TTL is set to (1-α)×IUI + α
×(LUnew-Timestamp).

• If the item did not change on the server and the TTL
did not expire on the QD, the TTL will not be mod-
ified. This case occurs because of the piggybacking
procedure described before.

• If the item expired on the QD, but did not change on
the server, the QD increases the TTL value by consi-
dering the current time as the update time, without
changing the timestamp value it stores. The TTL val-
ue will be set to (1-α)×IUI+α×(CurrentTime - Time-
stamp).
In some cases, the actual inter-update interval at the

server could increase while the estimated inter-update
interval may not have updated yet. This causes the last
calculated inter-update interval when the item was last
changed to become shorter than the time elapsed since
the past update. This gives rise to a next expiry time oc-
curring in the past. Should this situation occur, the QD
reacts by setting the next expiry time to the estimated
inter-update interval added to the current time (the time
the item was validated when its timestamp did not
change, or changed but the change was too old). This is
done by setting TTL to CurrentTime - Timestamp +IUI. This
situation stays in effect until the item gets a new time-
stamp (changes on the server).

For illustration purposes, a sample plot for the TTL
value versus the update rate of a Poisson update process

is depicted in Figure 5. This plot corresponds to an actual
simulation run for 2000 seconds. It shows that at very low
update rates (less than 1 update per 1000 sec) the esti-
mated TTL does not adapt well. However, in actuality,
time goes beyond the 2000 sec considered for this simula-
tion time, meaning that more item updates will occur on
the server during the longer time interval. It follows that
the actual TTL will not diverge to the same extent as
shown in Figure 5.

4 ANALYSIS
In this section we analyze DCIM to assess the band-

width gain over a given time period and the query re-
sponse time gain as compared to the poll-every-time
(PET) consistency scheme. We define the bandwidth gain
as the difference between the amounts of PET traffic and
DCIM traffic, over a defined period of time. Similarly, the
query response time gain is the difference between the
times it takes to get the answer of the query (measured
from the time of issuing the query) in the two schemes.
The results are in agreement with the results shown in
section 5.

Requests for data within the ad hoc network and ar-
rival of data updates at the server are assumed to be ran-
dom homogenous Poisson processes, and thus the inter-
arrival times are represented by exponential random va-
riables, as was suggested in [13] and [47]. We use λR to
denote the rate of requests and λU for the rate of updates,
and suppose that each query or data item can have its
own rate. The PDFs of the inter-arrival times are there-
fore:

t
UU

t
RR

UR etPetP λλ λλ −− ==)(,)((1)
To estimate the response time and traffic gains, we

borrow concepts from our previous work in [1] related to
the average number of hops required in the various situa-
tions in the calculations:
• HC is the average number of hops between the corner

of the topology and a randomly selected node. It is
used when a packet is sent between the server and a

0

10

20

30

40

50

60

70

80

0 25 50 75 100

Ti
m
e
re
sp
on

se
 g
ai
n
(s
)

Updt rate (items/sec)

‐9

‐8

‐7

‐6

‐5

‐4

‐3

‐2

‐1

0

1

0 10 20 30 40

Ba
nd

w
id
th
 G
ai
n
pe

r
no

de
 (k
b/
s)

Tpoll in (sec)
Fig. 6. Average Analytic performance measures: time response gain
(left) and bandwidth gain (right)

0

400

800

1200

1600

2000

0 400 800 1200 1600 2000

A
ve
ra
ge

 E
st
im

at
ed

 T
TL
 (s
)

Inverse of update rate (s)

Actual estimate

Theoretical estimate

Fig. 5. Average TTL versus inverse of inter-update interval.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

node in system.
• HR is the expected number of hops between any two

randomly selected nodes.
• HD is the expected number of hops to reach the QD

containing the reference to the requested data, in the
case of a hit.

• Tin is the transmission delay between two neighbor-
ing nodes (i.e., one hop delay), while Tout is the round
trip time between the MANET and the server.

• SD is the size of the data packet and SR is the size of
the request.

In what follows, we list the time response and band-
width gains for DCIM when compared with the poll
every time scheme. The details of the derivation are
found in Appendices B and C.

4.1 Response Time Gain
In Appendix C we prove that the response time gain is:

TRTT–PSC1×TRTT−(1−PSC1)×TMAN (2)

TRTT=Tout+Tin(2HC+HD) (3)

TMAN=Tin(2HR+HD) (4)

1
1

−×−××= RTTU T
RTTUSC eTP λλ (5)

This measure is plotted in the left graph of Figure 6,
where values consistent with the corresponding average
values in the simulations were used: HD=5, HR=5.21,
HC=5.21, Tin=5ms, Tout=70ms, and λU=1/500. As implied
from the expression above, the gain mainly depends on
the update rate which causes it to decrease slightly when
it increases. This agrees with Figure 8 in the experimental
section below, where at low update rates, the difference
in delay is around 70 ms, and decreases to be around 60
ms for large update rates.

4.2 Bandwidth Gain
The expression for the bandwidth gain (GB) is derived in
Appendix D and is:

Rtot×(Ppoll×Bpi+(1−Ppoll)×Bpo)−M×(BRpoll+Bpollnc+Bpollc)
−BRpigg−Bpiggnc−Bpiggc

(6)

where the the bandwidth usage of PET is described as:

Rtot×(Ppoll×Bpi+(1−Ppoll)×Bpo) (7)

and the is the bandwidth usage of DCIM is given by:

M×(BRpoll+Bpollnc+Bpollc)−BRpigg−Bpiggnc−Bpiggc (8)

In the expressions above, Bpo=SR(HD+HC)+SDHC+SRHR,
Bpi=SR(HD+2HC),Rtot = λRxTpigg, TR = 1/λR, and Tpigg is the
piggybacking interval. Tpoll is the polling interval, M is the
number of polling intervals, RU T

poll eP ×−= λ ,

Bpollc=l×(SDHC+SRHR), Bpollnc=(K-l)×SRHC, BRpoll=K×SRHC,
Bpiggc= m×SD HC, Bpiggnc= (N-m)×SR HC, BRpigg=N×SRHC, and
N is the number of items. The expressions for l, K, and m,
are found in Appendix D.

The bandwidth gain is plotted in the right graph of
figure 6, where in addition to the same hop count values
as those utilized above, the following values are used:

λR=λU=1/500, N=4000, M=20, SR=0.5KB, and SD=10KB. It
is worth noting, that N represents the number of cached
items (requested at least once before), rather than the total
number of items; this matches the experimental results
since not all items will be requested within the simulation
time. In effect, the traffic resulting from large piggyback-
ing intervals is lower than that of small piggybacking
interval. Also, the traffic demands for DCIM decrease
exponentially for small polling intervals in both the ana-
lytical and experimental results shown in figure 11.

5 EXPERIMENTAL RESULTS
DCIM was implemented using ns2 [39], and a new data-
base class was developed that mimics the server process
in storing and updating data items and in processing the
validation requests. Moreover, timers in ns2 were utilized
to implement the monitoring thread: the timer sleeps for
the polling interval duration and then wakes up to run
the inner-loop function. According to the design, after
Npoll runs of the inner-loop, (the piggybacking interval)
the outer-loop is invoked. Ns2 is a single threaded simu-
lator, but it is nevertheless capable of controlling the op-
erations of the timers autonomously, thus acting similar
to a multithreaded application.

Two additional schemes were implemented for com-
parison. The first is the poll-every-time mechanism (con-
sidered in Section 4), where each time an item is re-
quested, it is validated. The second is the fixed-TTL me-
chanism, where all items have the same expiry interval.
The TTL value is calculated by adding to the current time
the expiry interval, and when a TTL value expires, the
item is flagged as such, and is fetched from the server
whenever it is requested.

The simulation area was set to 400×400m2, populated
with 100 nodes that were randomly distributed. Propaga-
tion was according to the two-ray model, and the node's
bitrate was set to 2 Mbps. Mobility was based on the ran-
dom waypoint model (RWP), with a maximum speed of 2

TABLE 4
SUMMARY OF THE DEFAULT SIMULATION PARAMETERS

Simulation
Parameter

Default
Value

Simulation
Parameter

Default
Value

Simulation time 2000 sec Size of data item 10 KB

Network size 400×400
m2

Number of data
items updated/sec 20

Wireless
bandwidth 2 Mb/s Delay at the data

source 40 ms

Node trans. range 100 m Node request
period 10 sec

Number of nodes 100 Node request
pattern

Zipf
(θ=1)

mobility model RWP Node caching
capacity 200 KB

Node speed (v) 2 (m/s) Cache
Replacement LRU

Node pause time 30 sec Polling interval 2 sec
Total number of
data items 10,000 Npoll 20

AUTHOR ET AL.: TITLE 9

m/s. The server node was connected to the MANET via a
gateway and a wired link whose propagation delay was
simulated at 40ms, thus resulting in a server access delay
of 80ms. The server has 10,000 items which are updated
according to a Poisson random process at an average rate
of about 20 items per sec. In the default scenario, each
node issues a data request every 10 seconds according to
a Zipf access pattern, frequently used to model non-
uniform distributions [43]. In Zipf law, an item ranked i
(1≤ i ≤ nq) is accessed with probability: ()∑ =

qn

k
ki

1
/11/ θθ ,

where θ ranges between 0 (uniform distribution) and 1
(strict Zipf distribution). The default value of the Zipf
parameter θ was set to 1. In the default scenario, there are
7 QDs, and the capacity for each of the CNs (Caching
Nodes) is 200 Kb. The simulation parameters are summa-
rized in Table 4.

The reported results are from 5 experiments that in-

volve varying the request rate, the update rate, the zipf
parameter, the maximum velocity, and the polling inter-
val. The results are the 1) consistency ratio (with the data
source), 2) query delay (regardless of the source of the
results), 3) cached data query delay, 4) uplink traffic, 5)
downlink traffic, and 6) average overhead traffic.

5.1 Varying the request rate
In this experiment, the inter-request interval was varied
between 5s and 120s. The results are plotted in the graphs
of Figure 7, where it is evident that the poll every time
scheme provides the highest consistency ratio (top left
graph), since the requested items are validated for each
request. This causes the items to be always fresh, except
in certain cases when they change just after being vali-
dated. However, when using fixed TTL, the caches might
serve stale items (as in the case of TTL=500s), but this
possibility decreases when the TTL is less than the update

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

co
ns
is
te
nc
y
ra
ti
o

inter‐request interval (s)

fixed‐100

fixed‐500

poll every time

dcim
0

20

40

60

80

100

0 20 40 60 80 100 120

de
la
y
af
te
r
ca
ch
in
g
(m

s)

inter‐request interval (s)

fixed‐100
fixed‐500
poll every time
dcim

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

de
la
y
(m

s)

inter‐request interval (s)

fixed‐100
fixed‐500
poll every time
dcim

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

tr
af
fic
 p
er
 n
od

e
(k
b/
s)

inter‐request interval (s)

fixed‐100

fixed‐500

poll every time

dcim

0

50

100

150

200

250

300

0 20 40 60 80 100 120

se
rv
er
 u
pl
in
k
tr
af
fic
 (k
b/
s)

inter‐request interval (s)

fixed‐100

fixed‐500

poll every time

dcim

0

2

4

6

8

10

12

0 20 40 60 80 100 120

se
rv
er
 d
ow

nl
in
k
tr
af
fic
 (k
b/
s)

inter‐request interval (s)

fixed‐100

fixed‐500

poll every time

dcim

Fig. 7. Performance measures versus inter-request times

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

co
ns
is
te
nc
y
ra
ti
o

update rate (items/s)

fixed‐100

fixed‐500

poll every time

dcim
0

20

40

60

80

100

120

0 20 40 60 80 100

de
la
y
af
te
r
ca
ch
in
g
(m

s)

update rate (items/s)

fixed‐100
fixed‐500
poll every time
dcim

0

20

40

60

80

100

120

0 20 40 60 80 100

de
la
y
(m

s)

update rate (items/s)

fixed‐100

fixed‐500

poll every time

dcim

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

tr
af
fic
 p
er
 n
od

e
(k
b/
s)

update rate (items/s)

fixed‐100

fixed‐500

poll every time

dcim

0

200

400

600

800

1000

0 20 40 60 80 100

se
rv
er
 u
pl
in
k
tr
af
fic
 (k
b/
s)

update rate (items/s)

fixed‐100

fixed‐500

poll every time

dcim

0

2

4

6

8

10

12

14

0 20 40 60 80 100

se
rv
er
 d
ow

nl
in
k
tr
af
fic
 (k
b/
s)

update rate (items/s)

fixed‐100

fixed‐500

poll every time

dcim

Fig. 8. Performance measures versus update rates

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

interval (as in the case of TTL=100s). As a matter of fact,
getting the right TTL value is a key issue in relation to the
performance of client-based consistency approaches.
DCIM is a better approach as it tries to get the appropri-
ate TTL value through piggybacking, which helps in get-
ting a high consistency ratio. Moreover, prefetching
enables DCIM to provide a high hit ratio, and hence
much lower delays than the other approaches. As also
shown, the query delay gets smaller after the item is
cached but increases by a small margin due to less pre-
fetching as the request rate decreases. Finally, DCIM con-
sumes more traffic on the server side due to prefetching,
but is not far off from the other schemes. As for the node
traffic, by piggybacking large amount of items, DCIM
consumes more traffic when compared to other ap-
proaches. However, as the request rate decreases, pre-
fetching does not happen that often, and this leads to
lower traffic as shown in the graph. This is how DCIM
adapts prefetching to the request rate of items.

5.2 Varying the update rate
The results for this scenario are shown in Figure 8. A TTL
value of 100 seconds is less than the inter-update intervals
in all of the scenarios simulated, and hence, it must pro-
vide the best consistency level. As shown, DCIM’s consis-
tency ratio coincides with that of TTL=100s, which is
higher than that of TTL=500s. Of course, increasing the
update rate in any TTL algorithm would decrease its con-
sistency, but with a good TTL estimate, an acceptable
consistency could be obtained (comparing TTL=500s and
DCIM at 100 update/sec). Nevertheless, fixed TTL ap-
proaches have higher hit rates than poll every time, but
less than DCIM, which uses prefetching. This implies that
the delay after caching is the lowest in case of DCIM, and
does not vary as the update rate changes since prefetch-
ing is altered by request rates.

The gains in delay and consistency, discussed above,
are manifested in increased traffic as the update ratio in-

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

co
ns
is
te
nc
y
ra
ti
o

Zipf theta (θ)

fixed‐100

fixed‐500

poll every time

dcim
0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

de
la
y
af
te
r
ca
ch
in
g
(m

s)

Zipf theta (θ)

fixed‐100
fixed‐500
poll every time
dcim

0

20

40

60

80

100

120

140

0 0.5 1

de
la
y
(m

s)

Zipf theta (θ)

fixed‐100

fixed‐500

poll every time

dcim
0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

se
rv
er
 d
ow

nl
in
k
tr
af
fic
 (k
b/
s)

Zipf theta (θ)

fixed‐100

fixed‐500

poll every time

dcim

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1

tr
af
fic
 p
er
 n
od

e
(k
b/
s)

Zipf theta (θ)

fixed‐100
fixed‐500
poll every time
dcim

Fig. 9. Performance measures versus the zipf parameter

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20

co
ns
is
te
nc
y
ra
ti
o

maximum velocity (m/s)

fixed‐100

fixed‐500

poll every time

dcim
0

20

40

60

80

100

120

0 4 8 12 16 20

de
la
y
af
te
r
ca
ch
in
g
(m

s)

maximum velocity (m/s)

fixed‐100
fixed‐500
poll every time
dcim

0

20

40

60

80

100

120

140

0 4 8 12 16 20

de
la
y
(m

s)

maximum velocity (m/s)

fixed‐100
fixed‐500
poll every time
dcim

0

1

2

3

4

5

6

7

8

0 4 8 12 16 20

tr
af
fic
 p
er
 n
od

e
(k
b/
s)

maximum velocity (m/s)

fixed‐100
fixed‐500
poll every time
dcim

0

50

100

150

200

250

300

0 4 8 12 16 20

se
rv
er
 u
pl
in
k
tr
af
fic
 (k
b/
s)

maximum velocity (m/s)

fixed‐100

fixed‐500

poll every time

dcim

0

2

4

6

8

10

12

0 4 8 12 16 20

se
rv
er
 d
ow

nl
in
k
tr
af
fic
 (k
b/
s)

maximum velocity (m/s)

fixed‐100

fixed‐500

poll every time

dcim

Fig. 10. Performance measures versus the node maximum velocity

AUTHOR ET AL.: TITLE 11

creases. However this traffic is not high at the server, and
is very low in the MANET (less than 20 kbps, while the
bandwidth is 2Mbps). The reason for the high traffic is the
piggybacking of requests, which increases in frequency as
update rates increase. Without this traffic though, the
QDs cannot infer the update rate and cannot calculate
reliable TTL values.

5.3 Varying the Zipf parameter
This scenario studies the effect of the popularity of certain
data items on performance by varying the value of the
zipf parameter θ. The results are shown in Figure 9.

In actuality, varying the θ value is analogous to vary-
ing the items’ request rates. This scenario actually shows
the prefetching adaptation to the request rates, which was
explained in Section 3. As θ increases, the diversity of the
requested items decreases, meaning that a smaller subset
of the items is requested more. In case one item is up-
dated at the server before the TTL expiration, more stale

cached items will result. This is why the consistency ratio
decreases as θ increases. However, DCIM maintains the
TTL for all items regardless of their request rates, and this
gives a constant consistency at 98%. The situation is re-
versed when considering hit ratios. For low θ values the
hit ratio for fixed TTL is low since item requests are dis-
tributed across all items, which increases the probability
of having expired items while the request interval is
fixed. As θ increases, the same requests will be distributed
over a smaller set which increases the probability of hits.
It is evident that through prefetching, DCIM provides
nearly constant hit rate, which results in lower delays as
explained before. DCIM produces more traffic when
compared to the other approaches, but this traffic de-
creases as θ increases since there is a smaller subset of
items to validate. More items will have lower update
rates, and will not be validated frequently.

5.4 Varying the maximum node velocity
The maximum node velocity is varied between 0 m/s and
20 m/s, and the results are shown in the graphs of Figure
10. Velocity changes show no special results, although
there is a mild increase in the delay when velocity in-
creases, which is considered normal. In fact, the use of a
proactive routing protocol masks the delay by making the
paths always available.

The graphs of Figure 10 show expected results as to-
pology changes are irrelevant to a client-based consisten-
cy scheme. We note that the reported MANET traffic is
the DCIM overhead traffic and does not include routing
traffic which must have increased as a function of veloci-
ty.

5.5 Varying the polling interval
Here, the polling interval is varied between 1 and 50
seconds, while the fixed TTL values are kept constant, i.e.
100 and 500 seconds. The results are shown the graphs of
Figure 11. The increase of the polling interval causes a
decrease in both the consistency ratio and the hit ratio,
and consequently, an increase in the delay which remains
below that of fixed TTL. Moreover, the traffic in the up-
link direction increases when the piggyback interval in-
creases due to the decrease of hit rate. Finally, it is worthy
to point out the decrease in the traffic in the downlink
direction at the server and the sharp decrease in the traffic
per node in the network. These results are expected since
with increasing the polling interval, the validation re-
quests originating from the inner loop function become
more apart in time. However, when piggybacking inter-
vals are very large, the QD predicts that items will be re-
quested before the end of the piggybacking interval. This
leads to more prefetching and consequently more traffic.

5.6 Energy Consumption
DCIM is by design a client based approach, and moving
all the processing to the client side might hinder the mo-
bile devices’ energy resources. To investigate this possi-
bility, we conducted an experiment to assess the energy
load DCIM imposes on the QD, in particular, as it is re-
sponsible for monitoring and maintaining the items in the
cache. The experiment was conducted in two stages. The

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50

co
ns
is
te
nc
y
ra
ti
o

polling interval (s)

fixed‐100

fixed‐500

poll every time

dcim
0

20

40

60

80

100

120

0 10 20 30 40 50

de
la
y
af
te
r
ca
ch
in
g
(m

s)

polling interval (s)

fixed‐100
fixed‐500
poll every time
dcim

0

20

40

60

80

100

120

0 10 20 30 40 50

de
la
y
(m

s)

polling interval (s)

fixed‐100

fixed‐500

poll every time

dcim
0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50

tr
af
fic
 p
er
 n
od

e
(k
b/
s)

polling interval (s)

fixed‐100
fixed‐500
poll every time
dcim

0

100

200

300

400

500

0 10 20 30 40 50

se
rv
er
 u
pl
in
k
tr
af
fic
 (k
b/
s)

polling interval (s)

fixed‐100

fixed‐500

poll every time

dcim

0

2

4

6

8

10

12

14

0 10 20 30 40 50

se
rv
er
 d
ow

nl
in
k
tr
af
fic
 (k
b/
s)

polling interval (s)

fixed‐100

fixed‐500

poll every time

dcim

Fig. 11. Performance measures versus the polling interval

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

first had to do with studying the processing energy con-
sumption of DCIM on a QD, while the second stage as-
sessed the network energy consumption on the QD. For
this purpose we implemented the QD functions using

J2ME and installed the application on a NOKIA E71 de-
vice. We monitored the performance of the application
using an energy profiler, a tool distributed by NOKIA, for
300 seconds. This tool measures the internal current in the
device and reports real time power consumption. As
shown in Figure 12, in the first 30 seconds, the application
was initiating, so it does not count as a part of the QD
operations. After that, it is obvious that processing con-
sumes little energy (less than 0.068W on average).

In the second stage we monitored the energy con-
sumed by network communications, using the ns2 energy
model. In ns2, a node is given an initial energy and after
each transmission or reception, this energy is diminished
by the transmission/reception power multiplied by the
corresponding delay. The results are also shown in Figure
12. The first 500 seconds are recorded from one of the si-
mulations performed before, where the average transmis-
sion/reception power was 0.115W. The average power
consumption from networking and processing was
0.182W. To understand the implications of this value, we
consider the NOKIA E71 device’s battery which has a
capacity of 1548 mA.h and a voltage rating of 3.9V. With
this rate of power consumption, the battery would last for
about 33 hours of continuous use.

5.7 Comparison with SSUM
This section compares the performance of DCIM to that of
SSUM [38] (mentioned in Section 3.1). In SSUM the server
propagates item update information to the QDs, and
stores information about each item cached in the network.
For each item, the server computes a ratio of its update
rate to its request rate. If this ratio exceeds a given thre-
shold, the item is deleted from the server’s state table, and
no updates about it are propagated. However, if this ratio
falls below another threshold, the caching node receives
updates for the corresponding item. Hence, SSUM reduc-
es traffic associated with unnecessary updates for items
that are more updated than requested.
DCIM is an alternative approach that relies on the client
side to implement the consistency mechanism. The server
stores no information about the MANET or the history,
except for the last update time. Also, DCIM adapts to the
update and request rates differently, but like SSUM, it
also tries to save traffic. The update rates are estimated on
the client side, rather than being maintained by the serv-

Fig. 13. Performance comparison between SSUM and DCIM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1
6

3
2

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

3
0
5

3
2
1

3
3
7

3
5
3

3
6
9

3
8
5

4
0
1

4
1
7

4
3
3

4
4
9

4
6
5

4
8
1

4
9
7

5
1
3

5
2
9

P
o

w
er

 (
W

)

Simulation Time (s)

network consumption phone power

Fig. 12. Energy consumption at the QD

AUTHOR ET AL.: TITLE 13

er. SSUM achieves consistency with a delta equal to the
communication time between the server and caching
nodes. However as illustrated by the graphs of Figures 7
through 11, DCIM is able to provide consistency guaran-
tees if the polling interval is not high, but at the expense
of increased traffic which is actually comparable to what
SSUM generates.
To confirm the above analysis, three scenarios from [38]
were run to compare with DCIM using the same parame-
ters. The area was set to 750×750m2, the θ value used was
0.5, the request period was 20 sec, and the item size was
varied between 1 and 10 KB. All other parameters kept
the same values as before. We report the hit rate and
node traffic versus the request interval, update rate, and
node velocity. As seen in Figure 13, both approaches per-
form similarly in terms of hit rate and node traffic. The θ
value of 0.5 means there is more variety in the requested
items, and given there is a total of 10,000 items, the prob-
ability of requesting an element several times is low,
which reflects on the hit rate values. As for the traffic,
each approach has its share of traffic consumption. In
SSUM, maintaining the server state, and pushing data
items proactively constitute the traffic overhead. While in
DCIM, validation requests and proactive fetching of items
are responsible for its overhead traffic.

In Table 5, we conclude the experimental results pre-
sented in this section, by comparing DCIM to the pre-

sented pull based approaches and SSUM according to
delay, consistency, traffic, scalability, and practicality.

 6 CONCLUSION
In this work, we presented a pull based approach to in-
sure the consistency of data items cached inside a MA-
NET. This approach relies on estimating the inter update
intervals of the data items to set their expiry time. It
makes use of piggybacking to increase the estimation ac-
curacy of the inter update interval and to reduce traffic,
and also prefetches items with high request rates to re-
duce query delays. We compared this approach to two
pull-based approaches, namely fixed TTL and client pol-
ling, in addition to the server-based approach SSUM. The
evaluation showed that DCIM provides better perfor-
mance than the first two schemes, but at the expense of
more traffic (in the order of 10 Kbps), and a comparable
bandwidth consumption with SSUM.
For future work, we will explore three directions to ex-
tend DCIM. First, we will explore more sophisticated TTL
algorithms to replace the running average formula. Se-
condly, as we indicated in section 3, we will design a rep-
lica allocation scheme to increase data availability. It will
include an update propagation method that insures high
data consistency among the replicas with minimum traf-
fic. Thirdly, DCIM assumes that all nodes are well be-
haved, as issues related to security were not considered.
However, given the possibility of network intrusions, we
will explore integrating appropriate security measures
into the system functions. These functions include the QD
election procedure, QD traversal, QD and CN informa-
tion integrity, and TTL monitoring and calculation. The
first three are typical in a MANET and can be mitigated
through encryption and trust schemes [44] [45]. The last
issue was not tackled before, except in the case of [46]
which considers the manipulation of invalidation reports.
Similarly, a change in the last update time in DCIM can
trick the QD into deciding that the item was not changed
on the server.

REFERENCES
[1] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, N. Sulieman, “COACS:

A Cooperative and adaptive caching system for MANETS”, IEEE
TMC, v.7, n.8, pp. 961-977, 2008.

[2] D. Barbara and T. Imielinski, “Sleepers and Workaholics: Caching
Strategies for Mobile Environments,” In Proc. ACM SIGMOD, pp. 1-12,
May 1994.

[3] G. Cao, “A Scalable low-Latency Cache Invalidation Strategy for Mo-
bile Environments,” IEEE TKDE, v. 15, n. 5, pp. 1251-1265, 2003.

[4] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation Protocol.
IETF Internet Draft, March 2001, http://tools.ietf.org/html/draft-
danli-wrec-wcip-01.

[5] Jiannong Cao; Zhang, Y.; Cao, G.; Li Xie; , "Data Consistency for Coop-
erative Caching in Mobile Environments," Computer , v.40, n.4, pp.60-
66, 2007

[6] P. Cao, C. Liu, “Maintaining strong cache consistency in the World-
Wide Web,” IEEE Trans. Computers, v. 47, pp. 445–457, 1998.

[7] W. Li, E. Chan, D. Chen and S. Lu, "Maintaining probabilistic consis-
tency for frequently offline devices in mobile ad hoc networks,"

TABLE 5
HIGH LEVEL COMPARISON BETWEEN DCIM AND THE OTHER

CACHE CONSISTENCY APPROACHES
Property/metric Poll Each Time Fixed TTL

Type Pull (client side) Pull (client side)
Query Delay High Based on chosen TTL
Consistency Ratio Highest Depending on chosen TTL
Traffic at Server low Low to medium

Practicality

Impractical due to
high delays +
disconnections
from server

Impractical: TTL value
does not work for all items
in all scenarios

MANET traffic Low Low

Scalability scalable Not scalable, TTL value
assignment is not scalable

Property/metric SSUM DCIM
Type Push (server side) Pull (client side)
Query Delay Low Low

Consistency Ratio High High (depending on
chosen polling interval)

Traffic at Server Medium
Medium, < 10 Kb/s per
node. (network bandwidth
= 2 Mbps)

Practicality

Limited
practicality:
requires server
maintaining state of
MANET

Most practical, since it
achieves low delay, high
consistency ratio

MANET traffic Medium Medium

Scalability
Limited Scalability:
Server maintains
state of MANET

Scalable like COACS, and
also because it operates on
the client side.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

in Proc. 29th IEEE Int’l Conf. Distributed Computing Systems, pp.
215-222, 2009.

[8] J. Jung, A.W. Berger, H. Balakrishnan, Modeling TTL-based internet
caches, in Proc. IEEE INFOCOM 2003, San Francisco, CA, March 2003.

[9] B. Krishnamurthy, C. Wills, “Study of piggyback cache validation for
proxy caches in the World Wide Web,” In Proc. USENIX, Monterey,
CA, December 1997.

[10] J. Lee, K. Whang, B. Lee, and J. Chang, "An update-risk based ap-
proach to TTL estimation in web caching," In Proc. WISE 2002, pp. 21-
29, 2002.

[11] D. Wessels, Squid Internet object cache, August 1998,
http://squid.nlanr.net/Squid/.

[12] Y. Huang, J. Cao, Z. Wang, B. Jin and Y. Feng, "Achieving flexible
cache consistency for pervasive internet access,” In Proc. PerCom, pp.
239-250, 2007.

[13] O. Bahat, A. Makowski, “Measuring consistency in TTL-based cach-
es,” Performance Evaluation, v. 62, pp. 439–455, 2005.

[14] M. Denko, J. Tian, "Cooperative Caching with Adaptive Prefetching in
Mobile Ad Hoc Networks," In Proc. IEEE WiMob'2006, pp.38-44, June
2006.

[15] J. Jing, A. Elmagarmid, A. Helal, and R. Alonso, “Bit-Sequences: An
Adaptive Cache Invalidation Method in Mobile Client/Server Envi-
ronments,” Mobile Networks and Applications, pp. 115-127, 1997.

[16] Q. Hu and D. Lee, “Cache algorithms based on adaptive invalidation
reports for mobile environments,” Cluster Computing, pp. 39-50, 1998.

[17] Z. Wang, S. Das, H. Che, and M. Kumar, “A scalable asynchronous
cache consistency scheme (SACCS) for mobile environments,” IEEE
TPDS, v. 15, n. 11, pp. 983-995, 2004.

[18] S. Lim, W. C. Lee, G. Cao and C. R. Das, "Cache invalidation strategies
for internet-based mobile ad hoc networks," Computer Comm., v. 30,
pp. 1854-1869, 2007.

[19] Kahol, S. Khurana, S. Gupta, and P. Srimani, “A scheme to manage
cache consistency in a distributed mobile wireless environment,” IEEE
TPDS, v. 12, n. 7, pp. 686-700, 2001.

[20] V. Cate, “Alex – A Global Filesystem,” in Proc. USENIX, pp. 1-12, May
1992.

[21] Y. Li and G. Le, "A caching model for real-time databases in mobile ad-
hoc networks," Database and Expert Systems Applications, pp. 186-
196, Springer, Berlin, Heidelberg, 2005.

[22] J. Cao, Y. Zhang, L. Xie, and G. Cao, “Consistency of Cooperative
Caching in Mobile Peer-to-Peer Systems over MANETs,” In Proc. 3rd
Int’l workshop on mobile distributed computing, v. 6, pp. 573-579, 2005.

[23] W. Li, E. Chan, Y. Wang, D. Chen, "Cache Invalidation Strategies for
Mobile Ad Hoc Networks," In Proc. ICPP 2007, pp.57, Sept. 2007.

[24] Y. Huang, J. Cao, B. Jin, X. Tao and J. Lu, "Cooperative Cache Consis-
tency Maintenance for Pervasive Internet Access," Wireless Comm.
and Mobile Computing, v.10, pp. 436-450, 2009.

[25] L. Yin and G. Cao, "Supporting cooperative caching in ad hoc net-
works," IEEE TMC, v. 5, n. 1, pp. 77- 89, 2006.

[26] G. Cao; L. Yin; C. Das, "Cooperative cache-based data access in ad hoc
networks," Computer, v. 37, n. 2, pp. 32-39, 2004.

[27] X. Tang, J. Xu, W-C. Lee, "Analysis of TTL-based consistency in un-
structured peer-to-peer networks," IEEE TPDS, v. 19, n. 12, pp.1683-
1694, 2008.

[28] L. Bright, A. Gal, and L. Raschid, "Adaptive pull-based policies for
wide area data delivery," ACM Trans. Database Systems, v. 31, n. 2,
pp. 631 – 671, 2006.

[29] Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz and K. Worrell,
"A hierarchical internet object cache," In Proc. USENIX, pp. 13, 1996.

[30] V. Jacobson, "Congestion Avoidance and Control," ACM SIGCOMM

Computer Comm. Review, v. 25, pp. 187, 1995.
[31] X. Chen and P. Mohapatra, "Lifetime behavior and its impact on web

caching," in Proc. IEEE Workshop on Internet Applications, pp. 54–61,
1999.

[32] Y. Sit, F. Lau, C-L. Wang, "On the cooperation of Web clients and
proxy caches," In Proc. 11th Int’l Conf. Parallel and Distributed Sys-
tems, pp. 264- 270, July 2005.

[33] Urgaonkar, A. Ninan, M. Raunak, P. Shenoy, K. Ramamritham,
"Maintaining mutual consistency for cached web objects," in Proc. 21st
Int’l Conf. Distributed Computing Systems, p. 371, 2001

[34] N. Chand, R. Joshi and M. Misra, "A zone co-operation approach for
efficient caching in mobile ad hoc networks," Int’l J. of Comm. Sys-
tems, v. 19, pp. 1009-1028, 2006.

[35] Y. Du, S.K.S. Gupta, "COOP - A cooperative caching service in MA-
NETs," In Proc. ICAS-ICNS, pp.58-58, Oct. 2005.

[36] Y. Du, S. K. S. Gupta and G. Varsamopoulos, "Improving on-demand
data access efficiency in MANETs with cooperative caching," Ad Hoc
Networks, v. 7, pp. 579-598, 2009.

[37] Holt, "Forecasting seasonals and trends by exponentially weighted
moving averages," International Journal of Forecasting, v. 20, n. 1, pp.
5-10, 2004.

[38] K. Mershad and H. Artail, "SSUM: Smart Server Update Mechanism
for Maintaining Cache Consistency in Mobile Environments," IEEE
TMC, v. 9, n. 6, pp.778-795, 2010.

[39] B. Krishnamurthy, C.E. Wills, “Piggyback server invalidation for
proxy cache coherency,” In Proc. 7th WWW Conf., Brisbane, Australia,
April 1998.

[40] Y. Fang, Z. J. Haas, B. Liang and Y. B. Lin, "TTL prediction schemes
and the effects of inter-update time distribution on wireless data
access," Wireless Networks, v. 10, pp. 607-619, 2004.

[41] J. Shim, P. Scheuermann, R. Vingralek, "Proxy cache algorithms: de-
sign, implementation, and performance," IEEE TKDE, v.11, n. 4,
pp.549-562, 1999.

[42] N. Dimokas, D. Katsaros and Y. Manolopoulos, "Cache consistency in
Wireless Multimedia Sensor Networks," Ad Hoc Networks, v. 8, n. 2,
pp. 214-240, 2010.

[43] G. Zipf, Human Behavior and the Principle of Least Effort. Addison-
Wesley, 1949

[44] N. A. Boudriga and M. S. Obaidat. “Fault and intrusion tolerance in
wireless ad hoc networks”.In Proc. IEEE WCNC, v. 4, pp. 2281–2286,
Washington, DC, 2005.

[45] P. Papadimitratos, Z. Haas. “Secure data transmission in mobile ad
hoc networks”, In Proc. ACM workshop on wireless security, pp. 41–
50, New York, 2003.

[46] W. Zhang and G. Cao, "Defending against cache consistency attacks in
wireless ad hoc networks," Ad Hoc Networks, vol. 6, pp. 363-379, 2008.

[47] H. Maalouf, and M. Gurcan, “Minimisation of the update response
time in a distributed database system,” Performance Evaluation, v. 50,
n. 4, pp. 245-66, 2002.

[48] Mondal, S. K. Madria and M. Kitsuregawa, "An Economic Incentive
Model for encouraging Peer Collaboration in Mobile-P2P networks
with support for constraint queries," Peer-to-Peer Networking and
Applications, vol. 2, pp. 230-251, 2009.

[49] T. Hara and S. Madria, "Dynamic Data Replication using Aperiodic
Updates in Mobile Adhoc Networks," in Database Systems for Ad-
vanced Applications, 2004, pp. 111-136.

