
INFOS2008, March 27-29, 2008 Cairo-Egypt
© 2008 Faculty of Computers & Information-Cairo University

NLP-141

ASKME: Adaptive and Self-evolving Knowledge-base for Mobile Environments

Hassan Artail Jad El Hage
Department of Electrical and Computer Engineering

American University of Beirut
Beirut, Lebanon

hartail@aub.edu.lb jge05@aub.edu.lb

Reda Aouad Kassem Fawaz
Department of Electrical and Computer Engineering

American University of Beirut
Beirut, Lebanon

rma66@aub.edu.lb kmf04@aub.edu.lb

Abstract

In spite of the existence of several systems that organize

and offer information to users (e.g. Internet, Intranet, or
private databases) finding the desired data is still a time
consuming task. ASKME solves this problem by providing
users with a collaborative learning environment which
evolves through direct and indirect user contributions. The
system includes a credit/debit system to make sure users
participate in providing answers and feedback. The system
can also provide users with online material that it has
located. The current system is implemented as a web server
and thus the knowledge-base (KB) is centralized. Future
plans include allowing for distributed data.

1. Introduction

Information is no longer available only through

monopolized systems. In higher learning for example, it is no
longer sufficient for students to depend on class notes,
handouts, and assigned books to acquire a thorough
understanding of subjects and apply it in laboratory
experiments and projects. Computer users are increasingly
depending on electronic systems, such as the Internet and
Intranet, for information resources. In spite of all the facilities
provided to speed up search and looking up information,
finding the right data is still a time consuming task. Having a
system that lets users learn from each other and acquire
focused information on their behalf can prove valuable in
today’s demanding environments. This is especially important
for organizations, where collaboration and knowledge sharing
have been recognized as key enablers for gaining
organizational effectiveness and competitive advantage [1, 2].
A roadblock, however, has been the low level of user
acceptance and the fact that current shareware systems require
effort to share knowledge. A system that does this on behalf of
users can make knowledge sharing a seamless process.

2. Solution

2.1 Proposed Solution

Our proposed system consists of a knowledgebase (KB) for
collaborative learning environments, which evolves through
direct and indirect user contributions. These contributions can
be in the form of answers to questions, deposit of material
(documents, links, etc.), or guidance that helps the system
search for and retrieve material from the Internet or other
sources behind the scene and on its own. The system embeds
intelligence aspects, which enable it to analyze and process
information into knowledge. In learning institutions, students
and even instructors can tap into this knowledge to get the
needed assistance and gain awareness about their environment
and relevant technologies. A system prototype was
implemented on top of a dynamic network of mobile devices
through which users access the system and interact with one
another. Through their mobile units, users can directly assist
others through answers and documents. Possible future
additions include implementing a distributed version of the KB
and adding caching modules on the dispersed mobile units.
These additions will enable the system to adapt better to mobile
environments where access to the KB is not always possible. In
short, the system would model a community within which
members work cooperatively toward acquiring, organizing, and
disseminating relevant knowledge.

2.2 Previous and Ongoing Work

The last few years have witnessed a rapid advancement in

Mobile and Wireless technologies, which has triggered a
considerable number of initiatives for introducing new
paradigms in learning. Here, we briefly go over a number of
related projects and technologies that relate to our proposed
work.

2.2.1 Mobile Learning Projects. The European-led
Mobilearn project aims at defining models for teaching and
learning in a mobile environment in addition to developing a
mobile learning architecture [5, 7]. This project focuses on the
interaction between the mobile user and the content server, and
falls short of creating a collaborative dynamic environment in

This work was funded by a grant from Mr. George Kadifa .

NLP-142

which mobile users act as a community to facilitate
information exchange.

Another m-learning initiative, ActiveClass, tries to integrate
mobile devices into the classroom environment to create a
“virtual student” [3]. The main objective is to facilitate
student-teacher interactions whereby students can pose
questions anonymously and teachers can answer or comment
on them during the same class or at a later time.

The Samsara project at the University of Michigan, tries to
achieve fairness in peer-to-peer storage systems to ensure that
nodes consume no more resources than what they contribute
[8]. The interesting aspect of this project is that it tries to
impose a system of punishment and reward in a distributed
mobile network and shares this concept with our proposed
framework. The reliability and fairness of this system is not
made clear, though. There is no central authority for credit
exchange that is in place to supervise these operations and
record each node’s contribution and usage.

The MIT OpenCourseWare and iCampus projects address
online course material publication and access to remote
services and data sources. The plan is to solve communication
problems between students and instructors in large classrooms
through the use of mobile devices.

The Sharable Courseware Object Reference Model
(SCORM) is a suite of technical standards that enable web-
based learning systems to find, import, share, reuse, and
export learning content in a standardized way [11]. Of special
importance to our proposed work is the Content Aggregation
Model (CAM) part that defines XML meta-tags for describing
learning content, binding it, and packaging it.

2.2.2 Network Infrastructure. Mobile Mesh Networks [15]
will be considered as a solution for interconnecting the mobile
devices in our system due to their ability to extend network
reach. A wireless mesh network is a multi-hop system in
which devices assist each other in transmitting packets
through the network. To achieve adequate connectivity it
might be necessary to require equipment to be on
continuously, which would drain battery life quickly. This is
one of the basic limitations of this technology since device
owners may be reluctant to allow their handhelds to act as
routers for others without some kind of a return. An equally
important issue to resolve relates to covertness, as users might
not want their devices to be transmitting without their direct
control.

Wireless ad-hoc networks represent another option for the
underlying network infrastructure of our proposed work due to
its properties in resolving communication problems in areas
with little or no infrastructure. Each node within the network
can operate as a router or a host depending on the event.
Several issues exist, however, that are associated with such
networks, mostly related to the volume of broadcast and
energy consumption. Although such subjects are not the focus
of our work at this stage, but we intend to experiment with
some of the proposed approaches in this regard and exploit the
work that has been done on mobile ad hoc networks, mostly in
relationship to routing (e.g., AODV and OLSR [7]).

3. System Description

3.1 General System Description

The knowledgebase includes intelligence aspects for

maximizing the probability of providing users with the right
information at the right time, virtually anywhere within a
prescribed geographical area. The inputs to the system are the
users’ questions and answers, while the outputs are the
question-specific answers in addition to relevant online
material. In one of the deployment scenarios, access to the
system will mainly be through Personal Digital Assistants that
communicate via a wireless network such as a Mobile Ad-hoc
Network (MANET). Figure 1 shows a generalized schematic
aimed at outlining the different system components and their
functionalities.

3.1.1 The warehouse. It is the central component, coordinates
all of the system activity.

3.1.2 The sentence similarity engine. It is the most involved
component, is based on Natural Language Processing (NLP),
and is able to analyze and understand user questions and
identify questions of equivalent meaning. One of the principle
functions of this component is to map syntactically-different
but semantically-same questions to the same answer, which
can be returned to the user.

3.1.3 The browser module. It consists of a web-based
interface through which the user can interact with the system
and receives the answers to his or her questions.

3.1.4 The web-searcher (crawler) module. It is responsible
for searching the web for answers to questions which could
not be matched in the KB. This component supports HTML
pages as well as other standard formats, like PDF, DOC, and
PPT.

3.1.5 The system databases. Two databases are maintained:
the ‘Data’ database which holds the knowledgebase that stores
the question-answer pairs (QAPs) as well as their related and
support information, and the ‘Record’ database which contains
the users’ information, including identification information as
well as credit/debit status.

Next, we will detail the implementation and capability of

each component and describe how the components interact
with one another to provide the overall functionality.

NLP-143

Warehouse

Internet

Sentence
Similarity
Engine

Browser

Record
Database

Data
Database

(QAP)

Retu
rn

pos
sib

le
an

sw
ers

 fo
r th

e

req
ue

ste
d q

ue
sti

on
s

Sch
ed

ule
d s

ea
rch

 fo
r q

ue
sti

on
s n

ot

foun
d i

n t
he

 D
ata

 D
B

Return answers

Request answers to
questions similar to the

submitted one

R
et

ur
n

cr
ed

it
ba

la
nc

e
an

d
re

lia
bi

lit
y

fa
ct

or

R
eq

ue
st

 re
po

rt
ab

ou
t

in
qu

ire
r’s

 c
re

di
t

ba
la

nc
e

R
et

ur
n

an
sw

er
s

to

si
m

ila
r q

ue
st

io
ns

 fo
un

d
in

 th
e

D
at

a
D

B

R
eq

ue
st

 a
ns

w
er

s
to

su

bm
itt

ed
 q

ue
st

io
ns

R
et

ur
n

si
m

ila
r

qu
es

tio
ns

 a
nd

co

rre
sp

on
di

ng
 a

ns
w

er
s

C
om

pa
re

 s
ub

m
itt

ed

qu
es

tio
n

w
ith

 D
B

st

or
ed

 q
ue

st
io

ns

Community
(Users

& Experts)

Ask question through
browser to warehouse

Return all similar
matches and

corresponding answers

Return answers from experts

Advertise unanswered questions to

trusted experts

Figure 1. A General Diagram of the System.

3.2 The Warehouse

As stated earlier, the warehouse has the job of coordinating

the system activity. This includes routing every question
through the database, as well as recording and processing user
ratings and managing the credit/debit system.

3.2.1 Routing Questions. When submitted, a user’s question
follows an intricate journey throughout the system’s Data
database tables. It is up to the warehouse to guide this journey.
The diagram in Figure 2 details a question’s path through the
system.

When a question is first asked, it is first forwarded to the
sentence similarity engine which will attempt to find an
equivalent KB question. That is, if an equivalent question is
found, then certainly an answer exist.

If an equivalent question is found, the answers to the top 3
matching KB questions are presented to the asking user who

can in turn rate the answer’s relevance to his or her question.
This rating can then be used to statistically assert the system
performance and fine-tune system parameters, such as the
question matching threshold.

In case an equivalent question is not found, and according
to the asking user’s initial choice, the question can be posted
for other users to answer, or the system can try to find an
answer via web searching.

Apart from being presented to the asking user, these non-
KB answers are made subject to user ratings. In case the
ratings meet certain criteria (number and quality of ratings) a
new QAP is formed and inserted into the KB. As such, the KB
self-evolves.

Asking users are asked to specify when question expire (a
huge value can be entered for non expiring questions).
Periodically, the warehouse deletes expired questions from the
KB to rid it of time-bounded questions.

NLP-144

Figure 2. High level question processing through system.

3.2.2 Processing User Ratings and Managing
Credit/Debits. To ensure that a user submits high-quality
answers, a credit system is implemented; it is intended to have
users contribute toward growing the data database. In order to
achieve this goal, the credit points can increase or decrease
according to the contribution of the user. The credit system is
described as follows: first, any user who signs up in the
system is granted a given number of credits (e.g., 100). This
allows him or her to ask several questions since he or she is
not considered a contributor to the system at first. Once he or
she starts asking questions, credits begin getting deducted
from his account, preventing him or her from asking
indefinitely without contributions to the system.

As was mentioned, in order to get credits, the user must
contribute to the system either by proposing answers to others’
questions, or by reviewing and rating other’s proposed
answers. When a user is reviewing a proposed answer to
his/her own question, he/she has the option to rate the answer,
from 1 to 10, 10 being the highest rating. This procedure gives
the submitter of that particular answer credits whose value is
equal to the awarded rating divided by two. The justification
behind this is that the answer provider is contributing to
providing answers that would eventually be part of the KB.

Credits are also realized when users rate other users’
answers to the questions of other users. This process however
does not give the user any credits at first, but when an answer
is rated with more than 10 times and the average rating is
higher than 6/10, each user who rated that question gets credits
according to how close his or her rating was to the average.
That is, the closer his or her rating the higher the credits he or
she obtains; a maximum of 8 credits can be gained in case the
user’s rating was equal to the average of all ratings.

The system differentiates between three types of users:
regular users, expert users, and administrators (we will discuss
administrators later). Expert users benefit from infinite credit
and reliability (their answers are not subjected to ratings) as

well as from the ability to trash an inadequately proposed
answer: if an expert user is reviewing proposed answers and
finds out that one answer is not valid for the question asked,
he or she can trash the answer and the user who proposed it
loses all his accumulated credits and gets notified of the event
once he or she logs in. The only way for him or her to regain
credits is to start proposing new answers or ratings to
previously proposed ones. This mechanism serves as a
gateway meant to prevent as much as possible attempts to
sabotaging or tricking the system by giving careless and
totally invalid answers. It therefore ensures that users in the
system provide contributing answers that add more knowledge
to the KB and help its growth.

3.3 Sentence Similarity Engine

This engine is at the core of our system: it has the major task
of generating similarity scores between two input sentences.
This sentence similarity is used to match incoming questions to
question-answer pairs in the KB. In order to compare the two
input sentences and generate a similarity score, a series of
preprocessing steps must be performed on the sentences.
Hence, the task of the sentence similarity engine is achieved
using a two-step process which starts off with a sentence
preprocessing procedure, followed by a Scoring phase. This is
shown in the diagram of Figure 3.

3.3.1 Preprocessing input sentences.This step takes an input
sentence as a string and outputs an array of WordInfo objects
which consists of a word and its associated part-of-speech and
semantic information.

It is important to note that this step can be performed on
each input sentence individually. This fact will be benefited
from by storing the WordInfo arrays of KB questions directly

User’s
Question

NLP
Processor

User/Web
Answers

Ratings KB
Answer

KB
Storage

Question
Deletion

Ti
m

e

Question
expired

KB Match

No KB
Match

Rating Criteria
Met

Rating Criteria
not Met

NLP-145

in the KB such that this preprocessing is only performed on
newly entered questions.

The preprocessing is done in four stages. First, the input
question is tokenized, that is the single string of characters is
divided into an array of individual tokens, each token
representing a word (or number or punctuation) in the original
string. Then, the array of tokens is tagged, meaning that each
token is assigned a part-of-speech tag. Next, the sense of each
individual token is determined as defined in the WordNet.Net
library [19] using a word-sense disambiguation procedure.
Finally, tokens are filtered, and only “relevant” tokens are
maintained. The following discussion details each stage:

3.3.2 Tokenizing. This stage is accomplished using a regular
expression tokenizer implemented using Python and the
Natural Language Tool Kit (NLTK) [20]. The regular
expression used distinguishes between words, numbers and
punctuation and separates each into individual tokens that get
arranged into an array and forwarded to the tagger.

3.3.3 Tagging. Part-Of-Speech tags are assigned using a
tagger process implemented in Python using NLTK. The
tagger uses a 5th order tagger and is trained using the NLTK
provided corpora which contain large amounts of tagged text.
The corpora used are the Brown and the Penn Treebank
corpuses containing different genres of tagged text.

As a 5th order tagger, training the tagger is both time and
memory consuming since, for every encountered word and its
associated tag, the parts of speech of the 5 preceding words are
taken into consideration. This entry, consisting of a word, its
tag, and the tags of the preceding words, is used to update the
tagger table. Once training is complete, this table consists of a
probability table which can be used to assign a tag to a word
given the tags of up to 5 preceding words. Given, the array of
tokens from the tokenizer, the tagger simply starts tagging the
words or tokens one after the other in a sliding window
fashion.

The different parts-of-speech that are used contain but are
not limited to: Noun, Verb, Adjective, and Adverb.

Since the tokenizer and tagger processes are implemented in
Python, and since the remainder of the system is written in C#,
interfacing between these two processes and the system was
implemented using piping, i.e. re-routing the standard input
and output streams of the python program to the C# program.

3.3.4 Word-sense disambiguation. In order to obtain a better
insight into the meaning of the input sentence, and since some
words may have different senses even when having the same
part-of-speech, determining the specific sense of the words in
the input sentence was necessary. In order to do this, a process
called word-sense disambiguation was used.

First, a lexicon had to be selected and integrated into the
system. WordNet is a database of over a hundred thousand
words with meanings and a complex architecture of word links.
WordNet.Net is a .NET framework library for WordNet and
can be easily integrated into a C# project.

The sense disambiguation process uses a context-based
approach and uses a sliding window algorithm. This means that
it uses the context equivalent to the words in a window of
given size around the currently processed word to determine
the sense. What it does is that it looks up the definitions of the
multiple senses of the current word given its part-of-speech.
Next, it will search for occurrences of context words (or their
synonyms) inside these definitions. The sense whose definition
has the greatest amount of context word hits is selected to be
the sense of the currently processed word. Each word in the
sentence is processed similarly until all word senses have been
determined.

Figure 3. Computing similarity of two questions

3.3.5 Stop-words filtering. Some words which do not
provide any meaningful information concerning the question’s
content have been found to induce unwanted results such as

excessively high scores on questions which do not match. A
few examples of such words are the articles “a”, “an”, and
“the”. In order to solve this problem, these unwanted words,

Input Questions q1 & q2

Tag questions using
NLTK tagger

Delete ‘stop word’ from
tagged questions

Call WordNet to get
the senses of the

original words

Lookup morphs
and return

alternative text

Sense
found?

Disambiguate by
scanning overlaps in

window of size k
(default k=8) (i.e.,

choose best sense)

Encapsulate
word/morph, sense, and

strength in array of
MyWordInfo objects

Disambiguate (words, tags)

Yes

No

GetScore (MyWordInfo S1,
S2)

Get Similarity Matrix

Compute Similarity Score

Start End

NLP-146

called stop-words are filtered out and removed from the
WordInfo array representing the sentence. The filtering is
implemented by simply checking the words in the WordInfo
array against a list of predefined stop-words. Note that this
step is left to the end in order not to change the context of any
word which could affect the tagging and sense disambiguation
procedures.

3.3.6 Scoring. The final similarity score is a float value
ranging between 0 and 1. This value is calculated by first
computing a similarity matrix which contains the similarity of
every word in one question to all other words in the second
question. The similarity between two words is taken as an
inverse relation to the Word Distance separating these two
words (with their respective parts-of-speech and senses) in the
WordNet lexicon. Having computed these word-to-word
similarities, the similarity between the two sentences is
computed as an average of these individual similarity scores:
It is taken to be the sum of the similarity scores of matching
words in the two sentences divided by the total number of
words in both sentences. Two questions are considered to
match if their similarity score is greater than 0.6 – this number
was obtained after rigorous testing.

Figure 4. Part of Question Asking Screen.

3.3.7 Searching. The KB holds a multitude of question-
answer pairs (QAPs) with their preprocessed WordInfo
objects. While a user submits a new question, he/she specifies
the topic of the question from a defined list of specific topics.
Once the question is submitted, the WordInfo objects array
of the new question is computed and scored against all the
questions in the same topic whose WordInfo objects are
simply loaded from the database. This speeds up search time
by storing WordInfo data in the database and avoiding re-
computation and also by searching only among KB entries
with same topic.

3.4 Browser

The Browser is a web interface that enables users to benefit

from all of the system’s functionalities. Users can navigate to
the site from any machine (PC or PDA) connected to the
network. As such the system is accessible at all times without
the need to install software on individual machines. The
interface was written in ASP.NET and benefits from all the
latest software technologies. Figures 4 and 5 provide parts of
the two screens through which users can ask the questions and
specify the domains, and view the status of submitted
questions, respectively.

Figure 5. Part of Question Status Viewing Screen.

NLP-147

3.4.1 User Credentials and Security

In order to benefit from the system, a user must first log into
his/her private account using username and password.
Accounts can be assigned on demand or self-created using an
available sign-up form.

In order to prevent from simple URL copy hack, when a
user logs in, a unique session is created with a maximum idle
period of 10 minutes. The session existence is checked at every
page load, in case the session is missing, the user is redirected
to the log-in page. The session is destroyed at log-out.

Also measures have been taken to prevent from SQL
injection when asking a question or proposing an answer. Only
properly formatted sentences are accepted.

3.4.2 System Functionality. There are three different types of
users:

Regular users. They can ask questions, propose and rate

others answers; but their proposed answers are submitted for
rating. They can also view the status of their pending questions
as well as their archived question-answer pairs.

Expert users. They have the same abilities as regular users

but their proposed answers are not subject to rating, and are
automatically accepted. An expert can also trash a user’s
proposal. It should be noted that this group of people are
supposed to be knowledgeable in their areas and have interest
in having the system function properly. For example, in a
university setting, experts can be professors or trusted graduate
assistants.

Administrators. They have the same abilities as expert

users, but they also have access to administrative functions
such as changing a user’s type or credits, accessing the
database. In most cases, these would be technical people
involved in programming the system.

When asking a question, users can specify the topic of the

question; this is used to enhance searching by limiting the
search space to specific topics. Users can propose new topics to
administrators. Also, users specify their choice of secondary
source in case no answer was found in the KB. They can
choose to submit the question to peers, or search the web for
answers, or both. Finally, users can specify if their question
expires, and in case it does, the expiry date. These details are
stored with the question in the database.

Users can propose answers to unanswered questions that
were specified to be submitted to users. The proposing user can
view all unanswered questions according to their topic. A
question can be selected and a proposal submitted. Once a
proposal is submitted, the question is taken out of the list of
questions.

Users can rate others’ answers to questions. Users select a
topic and a question from that topic and are able to review the
proposed answers and rate them. All of the user’s pending
questions and newly answered questions are made available to
the user through a check status page. Once newly answered

questions are viewed, they are stored in an archive table for
later review.

3.5 Web-Searcher

In case no equivalent question was found in the KB, and in

case the asking user specified to get answers from the web, the
web searcher module takes control over the question: it
searches using the Google web crawler for potential answers
and provides the top 5 pages – or documents – returned by
Google along with their descriptions and links. This is
accomplished through a web service provided by Google,
which allows us to do an automated search for any query.
Thus, the question is given to that service as asked by the user,
and the top results are given back to the user as “WEB”
answers to his unanswered question. That module was easy to
implement, since Google’s web service is provided as an API
that can easily be used in the .NET environment. This module
supports four types of web results provided by Google:

- Regular HTML pages
- Microsoft Office Word documents
- Microsoft Office PowerPoint documents
- Adobe Acrobat PDF documents

Whatever the document type is, each one of the 5 top results

is processed and the relevant data is extracted using specific
routines written for each of the four document types. This
allows the system to return concise answers or descriptions to
the user. For example, considering a Microsoft Office Word
document, the paragraph containing the greatest number of
keywords from the question is summarized and returned to the
user.

4. System Performance

4.1 Matching Speed

The matching procedure is the bottle-neck of the system

since a new question has to be matched against all the QAPs in
the KB and their number can grow indefinitely. To speed up
processing, three approaches were taken: a simple technique
that was employed to speed up the search was to categorize the
questions according to their topics and thus allowed for
limiting the search space to a subset of the KB. As a result,
more specific topics render more restrained search and faster
search. Another technique that we implemented in order to
decrease computation time and eliminate repetitive
computations, was to computer the WordInfo array of every
question only once and storing it in the database. Finally, since
the system has many different tasks to complete, we have tried
to benefit from parallelism as much as possible by separating
the different modules into separate processes and/or threads.

With the above enhancements, and to give an idea, under a
regular load, the average time it takes the system to search
through a series of 200 questions is about 10 seconds. This
number is encouraging, but nevertheless, we will look for
additional ways to decreasing it in the future.

NLP-148

4.2 System Reliability and Matching Accuracy

This testing concerned getting results about the accuracy of
the system regarding questions matching. A set of 200
questions was carefully prepared with corresponding answers
and fed into the QAPs table, so as to have the system consider
them as part of the KB. For each of those questions, five
similar versions were asked: similar either in the sentence
structure or in the keywords that it contains. The versions were
obtained by asking the question in different forms, changing
words with others having similar meanings, using
abbreviations, changing the tense, etc. We implemented a user
interface that shows the three top most matching questions in
the KB to the posed one along with associated similarity
scores. For each submitted question, manual inspection of the
questions was performed to obtain the number of questions in
the KB that actually matched the asked question. The results
are summarized in Table 1 and in the pie chart of Figure 6.

Table 1. Testing Results

Matching
Questions

Non-
Matching
Questions

Average
Score

Score
Standard
Deviation

84 % 16 % 0.795 0.212

Figure 6. Matching Results based on a test of 200

Questions.

The tests were also used to measure the times in answering

each question. To gain a detailed sense of the response time of
the system, the times were sorted against the number of words
in the question (excluding the non-stop words). Figures 7 and
8 show the results of the disambiguator and comparator stages
of the system through a scatter plot.

5. Future Work

Several ideas for improving the performance of the system

and its usability have been compiled. First, concerning current
performance of the search engine, it may be regarded as
satisfactory; however the engine remains the bottleneck of the
system. We believe that it can be further enhanced. One such
enhancement would be to add more indexing in the databases
to improve the matching process.

One feature that would improve the usability and also the
accuracy of the system is a spell checker, to check the
correctness of user questions before submission. One possible
solution that has already been thought of is to use Microsoft
Word’s integrated spell checker.

0

0.1

0.2

0.3

0.4

0.5

3 4 5 6 7 8 9 10 11 12 13
Number of non-stop words in question

Ti
m

e
(s

ec
)

Figure 7. Processing time of Disambiguator.

0

5

10

15

20

25

30

35

3 4 5 6 7 8 9 10 11 12 13
Number of non-stop words in question

Ti
m

e
(s

ec
)

Figure 8. Processing time of Comparator.

Acknowledgment

The authors would like to thank Mr. George Kadifa for his

generous grant, which financed this research and made it
possible to develop the ASKME system. We also thank the
head of the Faculty of Engineering and Architecture at the
American University of Beirut, Dean Ibrahim Hajj, for his
efforts to acquire this grant.

 Questions matching correctly above threshold
 Questions matching correctly below threshold

Questions matching unrelated questions

84%

11%
5%

NLP-149

References

[1] J.R. Riesenberger, Executive Insights: Knowledge – The source
of sustainable competitive advantage. Journal of International
Marketing. 6(3), 1998, pp. 94-107.

[2] K.M. Wigg, Introducing knowledge management into the
enterprise. In Knowledge Management Handbook. J. Liebowitz
(ed.), Boca Raton: CRC Press, 1999.

[3] http://www-cse.ucsd.edu/~wgg/Abstracts/activeclass-cscl03.pdf
(THE ACTIVECLASS PROJECT: EXPERIMENTS IN
ENCOURAGING CLASSROOM PARTICIPATION)

[4] http://www.eee.bham.ac.uk/sharplem/Papers/ijceell.pdf
(Disruptive Devices: Mobile Technology for Conversational
Learning)

[5] http://www.mobilearn.org/download/results/guidelines.pdf
("Guidelines for Developing Mobile Learning Deliverable"
(pdf file - 221 KB))

[6] http://www.eee.bham.ac.uk/sharplem/Papers/handler%20cal20
01.pdf (A Systems Architecture for Handheld Learning
Resources)

[7] http://www.mobilearn.org/download/results/Mlearn_paper.pdf
(A Task-Centered Approach to Evaluating a Mobile Learning
Environment for Pedagogical Soundness)

[8] http://mobility.eecs.umich.edu/papers/sosp03.pdf (Samsara:
Honor Among Thieves in Peer­to­Peer Storage)

[9] http://www.eee.bham.ac.uk/sharplem/Papers/mobile%20learnin
g%20puc.pdf (The Design and Implementation of a Mobile
Learning Resource)

[10] http://www.m-
learning.org/docs/the_use_of_palmtop_computers_for_learning
_sept03.pdf (the_use_of_palmtop_computers_for_learning)

[11] http://www.adlnet.org/screens/shares/dsp_displayfile.cfm?fileid
=481 (SCORM refernce model overview)

[12] http://download.macromedia.com/pub/solutions/
downloads/elearning/scorm_flashlo.pdf (Making a
Macromedia Flash MX Learning Object SCORM-Conformant)

[13] http://ltsc.ieee.org/wg1/files/IEEE_1484_01_D09_LTSA.pdf
(IEEE Draft Standard for Learning Technology — Learning
Technology Systems Architecture (LTSA))

[14] www.elearningforum.com/meetings/ 2003/january/Rjs-jan-
2003.pdf (CISCO's e-learning architecture - presentation)

[15] www.elearningforum.com/meetings/2003/
january/eLearningForum_MS2.pdf (Creating a common
learning infrastructure - Microsoft - presentation)

[16] http://www.itu.int/osg/spu/newslog/categories/meshNetworks/
[17] http://en2.wikipedia.org/wiki/ad_hoc_protocols_implementatio

ns
[18] Knowledge Discovery Using KNOW-IT (KNOWledge base

Information Tools)
[19] WordNet.Net:

http://www.ebswift.com/OpenSource/WordNet.Net/
[20] NLTK: http://nltk.sourceforge.net/index.php/Main_Page

